A307536 Self referencing version of the "Kimberling shuffle" sequence (see Comments).
1, 2, 2, 4, 2, 6, 6, 8, 2, 2, 11, 2, 13, 14, 6, 6, 2, 11, 19, 2, 21, 6, 2, 2, 2, 26, 27, 6, 11, 26, 13, 11, 19, 19, 11, 2, 26, 26, 13, 40, 26, 2, 2, 13, 45, 2, 26, 19, 49, 50, 51, 51, 21, 13, 26, 2, 57, 26, 6, 13, 2, 27, 63, 57, 26, 6, 21, 26, 21, 11, 26, 40, 73, 74, 45, 11, 77, 78, 2, 80, 6, 49, 2, 2, 85, 73, 87, 27, 89
Offset: 1
Keywords
Examples
Examples of [k] for the above list up to k=27: [1]={1}; so a(1)=1 [2]={2,3,5,9,10,12,17,20,23,24,25,36,42,43,...}; so a(3)=a(5)=a(9)=...=a(43)=2, etc. [4]={4}; a(4)=4 [6]={6,7,15,16,22,28,59,66,81,...}; a(6)=a(7)=a(15)=...a(81)=6, etc. [8]={8}; a(8)=8 [11]={11,18,29,32,35,70,76,...}; a(18)=a(29)=...=a(76)=11, etc. [13]={13,31,39,44,54,60,90,...}; a(31)=a(39)=...=a(90)=13, etc. [14]={14}; a(14)=14 [19]={19,33,34,48,...} [21]={21,53,67,69,...} [26]={26,30,37,38,41,47,55,58,65,68,71,95,99,...} [27]={27,62,88,...}
References
- R. K. Guy, Unsolved Problems Number Theory, Sect E35.
Links
- D. Gale, Tracking the Automatic Ant: And Other Mathematical Explorations, ch. 5, p. 27. Springer, 1998.
- C. Kimberling, Problem 1615, Crux Mathematicorum, Vol. 17 (2) 44 1991 and Vol. 18, March 1992, pp. 82-83.
- Eric Weisstein's World of Mathematics, Kimberling Sequence
Programs
-
PARI
{A(z) = x=z; y=z; xx=2*x-4; while (y<=xx, x--; xx-=2; if (bittest(y,0)==1, y=x+((y+1)>>1), y=x-(y>>1))); return(x+y-1);}; {B(z) = a=z; n=1; while (a!=n, if (a
2*n, a--, a=2*(a-n)-1);n++); return(a);}; \\ Lars Blomberg, Apr 29 2019
Comments