cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307800 Binomial transform of least common multiple sequence (A003418), starting with a(1).

This page as a plain text file.
%I A307800 #24 Jun 06 2019 02:42:16
%S A307800 1,3,11,37,153,551,2023,7701,29417,107083,384771,1408133,5457961,
%T A307800 22466367,92977823,365613181,1342359393,4677908531,16159185307,
%U A307800 58676063493,231520762361,967464685783,4052593703511,16354948948517,62709285045913,229276436653851
%N A307800 Binomial transform of least common multiple sequence (A003418), starting with a(1).
%H A307800 Jackson Earles, Aaron Li, Adam Nelson, Marlo Terr, Sarah Arpin, and Ilia Mishev <a href="https://www.colorado.edu/math/binomial-transforms-sequences-spring-2019">Binomial Transforms of Sequences</a>, CU Boulder Experimental Math Lab, Spring 2019.
%F A307800 a(n) = Sum_{k=0..n} binomial(n,k)*A003418(k+1).
%F A307800 Formula for values modulo 10: (Proof by considering the formula modulo 10)
%F A307800     a(n) (mod 10) = 1, if n = 0, 2 (mod 5),
%F A307800     a(n) (mod 10) = 3, if n = 1, 4 (mod 5),
%F A307800     a(n) (mod 10) = 7, if n = 3 (mod 5).
%e A307800 For n = 3, a(3) = binomial(3,0)*1 + binomial(3,1)*2 + binomial(3,2)*6 + binomial(3,3)*12 = 37.
%p A307800 b:= proc(n) option remember; `if`(n=0, 1, ilcm(n, b(n-1))) end:
%p A307800 a:= n-> add(b(i+1)*binomial(n, i), i=0..n):
%p A307800 seq(a(n), n=0..30);  # _Alois P. Heinz_, Apr 29 2019
%t A307800 Table[Sum[Binomial[n, k]*Apply[LCM, Range[k+1]], {k, 0, n}], {n, 0, 30}] (* _Vaclav Kotesovec_, Jun 06 2019 *)
%o A307800 (Sage)
%o A307800 def OEISbinomial_transform(N, seq):
%o A307800     BT = [seq[0]]
%o A307800     k = 1
%o A307800     while k< N:
%o A307800         next = 0
%o A307800         j = 0
%o A307800         while j <=k:
%o A307800             next = next + ((binomial(k,j))*seq[j])
%o A307800             j = j+1
%o A307800         BT.append(next)
%o A307800         k = k+1
%o A307800     return BT
%o A307800 LCMSeq = []
%o A307800 for k in range(1,26):
%o A307800     LCMSeq.append(lcm(range(1,k+1)))
%o A307800 OEISbinomial_transform(25, LCMSeq)
%o A307800 (PARI) a(n) = sum(k=0, n, binomial(n, k)*lcm(vector(k+1, i, i))); \\ _Michel Marcus_, Apr 30 2019
%Y A307800 Binomial transform of A003418 (shifted).
%K A307800 nonn
%O A307800 0,2
%A A307800 _Sarah Arpin_, Apr 29 2019