This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307804 #42 Apr 25 2025 04:29:44 %S A307804 1,0,1,0,2,1,0,14,6,1,0,201,68,12,1,0,4704,1285,200,20,1,0,160890, %T A307804 36214,4815,460,30,1,0,7538040,1422288,160594,13755,910,42,1,0, %U A307804 462869190,74416131,7151984,535864,33110,1624,56,1,0,36055948320,5016901734,413347787,26821368,1490664,70686,2688,72,1 %N A307804 Triangle T(n,k) read by rows: number of labeled 2-regular digraphs (multiple arcs and loops allowed) on n nodes with k components. %H A307804 Alois P. Heinz, <a href="/A307804/b307804.txt">Rows n = 0..140, flattened</a> %H A307804 Tom Copeland, <a href="https://mathoverflow.net/a/490571/231922">Production matrix for certain family of integer coefficients</a>, answer to question on MathOverflow (2025). %H A307804 E. N. Gilbert, <a href="https://doi.org/10.4153/CJM-1956-046-2">Enumeration of labelled graphs</a>, Can. J. Math. 8 (1956) 405-411. %H A307804 Richard J. Mathar, <a href="https://arxiv.org/abs/1903.12477">2-regular Digraphs of the Lovelock Lagrangian</a>, arXiv:1903.12477 [math.GM], 2019. %F A307804 T(n,1) = A123543(n). %F A307804 T(n,k) = Sum_{Compositions n=n_1+n_2+...n_k, n_i>=1} multinomial(n; n_1,n_2,..,n_k) * T(n_1,1) * T(n_2,1)*... *T(n_k,1)/ k!. %F A307804 E.g.f.: Sum_{n,k>=0} T(n,k)*x^n*t^k/n! = exp(t*E123543(x)) where E123543(x) = Sum_{n>=1} A123543(n)*x^n/t^n. [Gilbert]. - _R. J. Mathar_, May 08 2019 %F A307804 Conjectures from _Mikhail Kurkov_, Mar 22 2025: (Start) %F A307804 Recursion for the k-th column (independently of other columns): T(n,k) = (1/(n-k))*Sum_{j=2..n-k+1} c(j-1)*binomial(n,j)*T(n-j+1,k) for 1 <= k < n with T(n,n) = 1 where b(n) = A123543(n), c(n) = n*b(n+1) - Sum_{j=1..n-1} binomial(n+1,j+1)*b(n-j+1)*c(j) for n > 0. %F A307804 Production matrix is binomial(n,k)*d(n-k) (starting from the first row) for 0 <= k <= n, 0 otherwise where d(n) = E_n^{(-1)} from A356145 with a_k = b(k+1) for k > 0 (see _Tom Copeland_ link). %F A307804 The same things seems to work for any b(n) with b(1) = 1 (I mean that it works for e.g.f. exp(t*F(x)) where F(x) = Sum_{n>=1} b(n)*x^n/n!). (End) %e A307804 Triangle T(n,k) starts: %e A307804 1; %e A307804 0, 1; %e A307804 0, 2, 1; %e A307804 0, 14, 6, 1; %e A307804 0, 201, 68, 12, 1; %e A307804 0, 4704, 1285, 200, 20, 1; %e A307804 0, 160890, 36214, 4815, 460, 30, 1; %e A307804 0, 7538040, 1422288, 160594, 13755, 910, 42, 1; %e A307804 ... %p A307804 b:= proc(n) option remember; `if`(n<2, 1, %p A307804 n^2*b(n-1)-n*(n-1)^2*b(n-2)/2) %p A307804 end: %p A307804 a:= proc(n) option remember; `if`(n=0, 0, b(n)- %p A307804 add(j*binomial(n, j)*b(n-j)*a(j), j=1..n-1)/n) %p A307804 end: %p A307804 g:= proc(n, k) option remember; `if`(n=0, x^k/k!, %p A307804 add(g(n-j, k+1)*a(j)*binomial(n,j), j=1..n)) %p A307804 end: %p A307804 T:= (n,k)-> coeff(g(n, 0), x, k): %p A307804 seq(seq(T(n, k), k=0..n), n=0..10); # _Alois P. Heinz_, Mar 22 2025 %t A307804 b[n_] := b[n] = If[n < 2, 1, n^2*b[n - 1] - n*(n - 1)^2*b[n - 2]/2]; %t A307804 a[n_] := a[n] = If[n == 0, 0, b[n] - Sum[j*Binomial[n, j]*b[n - j]*a[j], {j, 1, n - 1}]/n]; %t A307804 g[n_, k_] := g[n, k] = If[n == 0, x^k/k!, Sum[g[n - j, k + 1]*a[j]* Binomial[n, j], {j, 1, n}]]; %t A307804 T[n_, k_] := Coefficient[g[n, 0], x, k]; %t A307804 Table[Table[T[n, k], { k, 0, n}], {n, 0, 10}] // Flatten (* _Jean-François Alcover_, Apr 16 2025, after _Alois P. Heinz_ *) %Y A307804 Cf. A123543 (column k=1), A000681 (row sums). %K A307804 nonn,tabl,easy %O A307804 0,5 %A A307804 _R. J. Mathar_, Apr 29 2019