cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307824 Heinz numbers of integer partitions whose augmented differences are all equal.

This page as a plain text file.
%I A307824 #18 May 03 2019 21:25:14
%S A307824 1,2,3,4,5,7,8,11,13,15,16,17,19,23,29,31,32,37,41,43,47,53,55,59,61,
%T A307824 64,67,71,73,79,83,89,97,101,103,105,107,109,113,119,127,128,131,137,
%U A307824 139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227
%N A307824 Heinz numbers of integer partitions whose augmented differences are all equal.
%C A307824 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%C A307824 The augmented differences aug(y) of an integer partition y of length k are given by aug(y)_i = y_i - y_{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
%C A307824 The enumeration of these partitions by sum is given by A129654.
%H A307824 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a>
%e A307824 The sequence of terms together with their prime indices begins:
%e A307824     1: {}
%e A307824     2: {1}
%e A307824     3: {2}
%e A307824     4: {1,1}
%e A307824     5: {3}
%e A307824     7: {4}
%e A307824     8: {1,1,1}
%e A307824    11: {5}
%e A307824    13: {6}
%e A307824    15: {2,3}
%e A307824    16: {1,1,1,1}
%e A307824    17: {7}
%e A307824    19: {8}
%e A307824    23: {9}
%e A307824    29: {10}
%e A307824    31: {11}
%e A307824    32: {1,1,1,1,1}
%e A307824    37: {12}
%e A307824    41: {13}
%e A307824    43: {14}
%t A307824 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
%t A307824 aug[y_]:=Table[If[i<Length[y],y[[i]]-y[[i+1]]+1,y[[i]]],{i,Length[y]}];
%t A307824 Select[Range[100],And@@Table[SameQ@@Differences[aug[primeptn[#]],k],{k,0,PrimeOmega[#]}]&]
%Y A307824 Cf. A049988, A056239, A093641, A112798, A129654, A325327, A325328, A325351, A325359, A325366, A325389, A325394, A325395, A325396.
%K A307824 nonn
%O A307824 1,2
%A A307824 _Gus Wiseman_, May 03 2019