This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307824 #18 May 03 2019 21:25:14 %S A307824 1,2,3,4,5,7,8,11,13,15,16,17,19,23,29,31,32,37,41,43,47,53,55,59,61, %T A307824 64,67,71,73,79,83,89,97,101,103,105,107,109,113,119,127,128,131,137, %U A307824 139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227 %N A307824 Heinz numbers of integer partitions whose augmented differences are all equal. %C A307824 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A307824 The augmented differences aug(y) of an integer partition y of length k are given by aug(y)_i = y_i - y_{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3). %C A307824 The enumeration of these partitions by sum is given by A129654. %H A307824 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts.</a> %e A307824 The sequence of terms together with their prime indices begins: %e A307824 1: {} %e A307824 2: {1} %e A307824 3: {2} %e A307824 4: {1,1} %e A307824 5: {3} %e A307824 7: {4} %e A307824 8: {1,1,1} %e A307824 11: {5} %e A307824 13: {6} %e A307824 15: {2,3} %e A307824 16: {1,1,1,1} %e A307824 17: {7} %e A307824 19: {8} %e A307824 23: {9} %e A307824 29: {10} %e A307824 31: {11} %e A307824 32: {1,1,1,1,1} %e A307824 37: {12} %e A307824 41: {13} %e A307824 43: {14} %t A307824 primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A307824 aug[y_]:=Table[If[i<Length[y],y[[i]]-y[[i+1]]+1,y[[i]]],{i,Length[y]}]; %t A307824 Select[Range[100],And@@Table[SameQ@@Differences[aug[primeptn[#]],k],{k,0,PrimeOmega[#]}]&] %Y A307824 Cf. A049988, A056239, A093641, A112798, A129654, A325327, A325328, A325351, A325359, A325366, A325389, A325394, A325395, A325396. %K A307824 nonn %O A307824 1,2 %A A307824 _Gus Wiseman_, May 03 2019