This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307826 #46 May 15 2023 08:42:58 %S A307826 1,1,4,24,240,2880,46080,829440,18247680,510935040,15328051200, %T A307826 551809843200,22072393728000,927040536576000,42643864682496000, %U A307826 2217480963489792000,128613895882407936000,7716833752944476160000,509311027694335426560000 %N A307826 The number of integers r such that all primes above a certain value have the form primorial(n)*q +- r. %H A307826 William Boyles, <a href="/A307826/b307826.txt">Table of n, a(n) for n = 1..350</a> %F A307826 a(n) = Product_{k=1..n} A156037(k). %F A307826 a(n) = A000010(A002110(n))/2 for n > 1. %F A307826 a(n) = A005867(n)/2 for n > 1. - _Alexandre Herrera_, Apr 16 2023 %e A307826 For n=3, the third primorial is 2*3*5=30, and all primes at least 17 have the form 30n +- (1,7,11,13). So, a(3) = 4. %t A307826 a[1]=1; a[n_] := EulerPhi[Product[Prime[i], {i, 1, n}]]/2; Array[a, 20] (* _Amiram Eldar_, Jul 08 2019 *) %o A307826 (Python) %o A307826 import sympy %o A307826 def A307826(n): %o A307826 sympy.sieve.extend_to_no(n) %o A307826 s = list(sympy.sieve._list) %o A307826 prod = s[0] %o A307826 print("1") %o A307826 for i in range(1,n): %o A307826 prod*=s[i] %o A307826 print(sympy.ntheory.factor_.totient(prod)//2) %Y A307826 Cf. A000010, A002110, A005867, A156037. %K A307826 nonn %O A307826 1,3 %A A307826 _William Boyles_, Apr 30 2019