cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307834 Counterclockwise square spiral constructed by greedy algorithm such that the sum of the values of any two vertically or horizontally adjacent cells is unique.

This page as a plain text file.
%I A307834 #23 Jun 18 2019 11:57:23
%S A307834 0,0,1,2,2,5,1,8,10,1,12,13,2,15,17,18,3,20,19,25,2,27,22,21,32,2,35,
%T A307834 26,28,38,4,43,31,31,32,48,4,52,37,39,34,58,6,63,40,46,49,39,70,5,76,
%U A307834 42,56,51,45,80,5,86,44,62,66,67,46,96,5,100,50,71,72,76
%N A307834 Counterclockwise square spiral constructed by greedy algorithm such that the sum of the values of any two vertically or horizontally adjacent cells is unique.
%C A307834 Visually, we have a superposition of two images that we can separate by considering the parity of the sum of the x and y coordinates (see illustrations in Links section).
%H A307834 Rémy Sigrist, <a href="/A307834/b307834.txt">Table of n, a(n) for n = 0..10200</a> (-50 <= x <= 50 and -50 <= y <= 50)
%H A307834 Peter Kagey and Rémy Sigrist, <a href="/A307834/a307834_2.png">Colored representation of z(2*k)/abs(z(2*k))*a(2*k) for k = 1..501000</a> (where z(n) = A174344(n) + i*A274923(n) and the hue is function of k)
%H A307834 Peter Kagey and Rémy Sigrist, <a href="/A307834/a307834_3.png">Colored representation of z(2*k-1)/abs(z(2*k-1))*a(2*k-1) for k = 1..501000</a> (where z(n) = A174344(n) + i*A274923(n) and the hue is function of k)
%H A307834 Rémy Sigrist, <a href="/A307834/a307834.png">Colored illustration of the sequence (with cells (x,y) such that -500 <= x <= 500 and -500 <= y <= 500)</a>
%H A307834 Rémy Sigrist, <a href="/A307834/a307834_1.png">Colored illustration of the sequence in function of the parities of x and y</a>
%H A307834 Rémy Sigrist, <a href="/A307834/a307834.gp.txt">PARI program for A307834</a>
%e A307834 The spiral begins:
%e A307834     8--158---69--111---91---95---93--110---61--147----6
%e A307834     |                                                 |
%e A307834   164    5---96---46---67---66---62---44---86----5  140
%e A307834     |    |                                       |    |
%e A307834    67  100    4---48---32---31---31---43----4   80   64
%e A307834     |    |    |                             |    |    |
%e A307834   123   50   52    3---18---17---15----2   38   45   96
%e A307834     |    |    |    |                   |    |    |    |
%e A307834    97   71   37   20    2----2----1   13   28   51   88
%e A307834     |    |    |    |    |         |    |    |    |    |
%e A307834   102   72   39   19    5    0----0   12   26   56   82
%e A307834     |    |    |    |    |              |    |    |    |
%e A307834    99   76   34   25    1----8---10----1   35   42   94
%e A307834     |    |    |    |                        |    |    |
%e A307834   123   56   58    2---27---22---21---32----2   76   55
%e A307834     |    |    |                                  |    |
%e A307834    71  106    6---63---40---46---49---39---70----5  130
%e A307834     |    |                                            |
%e A307834   172    9--110---54---80---76---75---84---56--122----7
%e A307834     |
%e A307834    10--182---73--133--109--117--120--112--141---76--193
%o A307834 (PARI) See Links section.
%Y A307834 See A307838 for the multiplicative variant.
%Y A307834 Cf A174344, A274923.
%K A307834 nonn,look
%O A307834 0,4
%A A307834 _Rémy Sigrist_, May 01 2019