This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307834 #23 Jun 18 2019 11:57:23 %S A307834 0,0,1,2,2,5,1,8,10,1,12,13,2,15,17,18,3,20,19,25,2,27,22,21,32,2,35, %T A307834 26,28,38,4,43,31,31,32,48,4,52,37,39,34,58,6,63,40,46,49,39,70,5,76, %U A307834 42,56,51,45,80,5,86,44,62,66,67,46,96,5,100,50,71,72,76 %N A307834 Counterclockwise square spiral constructed by greedy algorithm such that the sum of the values of any two vertically or horizontally adjacent cells is unique. %C A307834 Visually, we have a superposition of two images that we can separate by considering the parity of the sum of the x and y coordinates (see illustrations in Links section). %H A307834 Rémy Sigrist, <a href="/A307834/b307834.txt">Table of n, a(n) for n = 0..10200</a> (-50 <= x <= 50 and -50 <= y <= 50) %H A307834 Peter Kagey and Rémy Sigrist, <a href="/A307834/a307834_2.png">Colored representation of z(2*k)/abs(z(2*k))*a(2*k) for k = 1..501000</a> (where z(n) = A174344(n) + i*A274923(n) and the hue is function of k) %H A307834 Peter Kagey and Rémy Sigrist, <a href="/A307834/a307834_3.png">Colored representation of z(2*k-1)/abs(z(2*k-1))*a(2*k-1) for k = 1..501000</a> (where z(n) = A174344(n) + i*A274923(n) and the hue is function of k) %H A307834 Rémy Sigrist, <a href="/A307834/a307834.png">Colored illustration of the sequence (with cells (x,y) such that -500 <= x <= 500 and -500 <= y <= 500)</a> %H A307834 Rémy Sigrist, <a href="/A307834/a307834_1.png">Colored illustration of the sequence in function of the parities of x and y</a> %H A307834 Rémy Sigrist, <a href="/A307834/a307834.gp.txt">PARI program for A307834</a> %e A307834 The spiral begins: %e A307834 8--158---69--111---91---95---93--110---61--147----6 %e A307834 | | %e A307834 164 5---96---46---67---66---62---44---86----5 140 %e A307834 | | | | %e A307834 67 100 4---48---32---31---31---43----4 80 64 %e A307834 | | | | | | %e A307834 123 50 52 3---18---17---15----2 38 45 96 %e A307834 | | | | | | | | %e A307834 97 71 37 20 2----2----1 13 28 51 88 %e A307834 | | | | | | | | | | %e A307834 102 72 39 19 5 0----0 12 26 56 82 %e A307834 | | | | | | | | | %e A307834 99 76 34 25 1----8---10----1 35 42 94 %e A307834 | | | | | | | %e A307834 123 56 58 2---27---22---21---32----2 76 55 %e A307834 | | | | | %e A307834 71 106 6---63---40---46---49---39---70----5 130 %e A307834 | | | %e A307834 172 9--110---54---80---76---75---84---56--122----7 %e A307834 | %e A307834 10--182---73--133--109--117--120--112--141---76--193 %o A307834 (PARI) See Links section. %Y A307834 See A307838 for the multiplicative variant. %Y A307834 Cf A174344, A274923. %K A307834 nonn,look %O A307834 0,4 %A A307834 _Rémy Sigrist_, May 01 2019