A307836 Number of Heegner rings in which prime(n) splits minus the number of Heegner rings in which it stays inert.
-4, -4, -3, -4, 0, -3, 1, -2, 1, -3, -3, 1, -1, 2, 1, 1, -1, -1, 2, -1, 1, -3, 1, -1, 3, -3, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 4, -3, -1, -1, 1, -3, 3, 1, 1, -1, -1, -3, 1, -1, -3, -1, 1, -1, -1, -1, -3, 1, 1, 1, -3, 1, -3, 3, 1, -1, 1, -1, -1, 1, 1, 1, -1, 3, -5, 1, 5, 1, -1, 1
Offset: 1
Keywords
Examples
We see that 3 = (1 - sqrt(-2))(1 + sqrt(-2)) = (1/2 - sqrt(-11)/2)(1/2 + sqrt(-11)/2) but is prime in Z[i], O_(Q(sqrt(-7))), O_(Q(sqrt(-19))), O_(Q(sqrt(-43))), O_(Q(sqrt(-67))) and O_(Q(sqrt(-163))). The fact that 3 = -sqrt(-3)^2 does not matter for our purpose here. So 3 splits in two of these domains but is prime in six of them. As 3 is the second prime, a(2) is therefore -6 + 2 = -4.
Crossrefs
Cf. A003173.
Programs
-
Mathematica
Table[Plus@@KroneckerSymbol[{-1, -2, -3, -7, -11, -19, -43, -67, -163}, Prime[n]], {n, 100}]
Formula
a(n) = Sum_{i = 1..9} Kronecker(H_i, prime(n)), where Kronecker(a, p) is the Kronecker symbol (the Legendre symbol for all odd primes) and H_i is the i-th Heegner number (A003173 multiplied by -1).
Comments