cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307838 Counterclockwise square spiral constructed by greedy algorithm such that the product of the values of any two vertically or horizontally adjacent cells is unique.

This page as a plain text file.
%I A307838 #14 May 01 2019 17:25:36
%S A307838 1,1,2,3,3,4,2,5,7,2,11,8,3,9,5,10,2,13,7,16,3,17,5,8,18,3,19,4,13,11,
%T A307838 5,14,7,12,8,23,1,29,5,15,8,22,5,23,4,18,17,6,26,5,27,6,25,9,11,19,1,
%U A307838 31,9,17,11,20,7,21,8,37,3,41,11,24,9,35,6,34,10
%N A307838 Counterclockwise square spiral constructed by greedy algorithm such that the product of the values of any two vertically or horizontally adjacent cells is unique.
%C A307838 This sequence is a two-dimensional variant of A088177.
%C A307838 Visually, we have a superposition of two images that we can separate by considering the parity of the sum of the x and y coordinates (see illustrations in Links section).
%H A307838 Rémy Sigrist, <a href="/A307838/b307838.txt">Table of n, a(n) for n = 0..10200</a> (-50 <= x <= 50 and -50 <= y <= 50)
%H A307838 Rémy Sigrist, <a href="/A307838/a307838.png">Colored illustration of the sequence (with cells (x,y) such that -500 <= x <= 500 and -500 <= y <= 500)</a>
%H A307838 Rémy Sigrist, <a href="/A307838/a307838_1.png">Colored illustration of the sequence in function of the parities of x and y</a>
%H A307838 Rémy Sigrist, <a href="/A307838/a307838.gp.txt">PARI program for A307838</a>
%e A307838 The spiral begins:
%e A307838     7---19---16---29---14---22---13---43----3---47----2
%e A307838     |                                                 |
%e A307838    31    8---21----7---20---11---17----9---31----1   43
%e A307838     |    |                                       |    |
%e A307838     2   37    1---23----8---12----7---14----5   19   14
%e A307838     |    |    |                             |    |    |
%e A307838    53    3   29    2---10----5----9----3   11   11   14
%e A307838     |    |    |    |                   |    |    |    |
%e A307838     4   41    5   13    3----3----2    8   13    9   21
%e A307838     |    |    |    |    |         |    |    |    |    |
%e A307838    37   11   15    7    4    1----1   11    4   25   11
%e A307838     |    |    |    |    |              |    |    |    |
%e A307838    10   24    8   16    2----5----7----2   19    6   31
%e A307838     |    |    |    |                        |    |    |
%e A307838    19    9   22    3---17----5----8---18----3   27   10
%e A307838     |    |    |                                  |    |
%e A307838    12   35    5---23----4---18---17----6---26----5   25
%e A307838     |    |                                            |
%e A307838    23    6---34---10---29---13----1---41----7---36----8
%e A307838     |
%e A307838     9---29----8---26---12---25---49----8---32---10---43
%o A307838 (PARI) See Links section.
%Y A307838 See A307834 for the additive variant.
%Y A307838 Cf. A088177.
%K A307838 nonn
%O A307838 0,3
%A A307838 _Rémy Sigrist_, May 01 2019