This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307839 #29 Jun 13 2021 03:45:37 %S A307839 1,0,0,137,336,884,1968,4545 %N A307839 Minimum number of Latin subrectangles in a diagonal Latin square of order n. %C A307839 An Latin subrectangle is a m X k Latin rectangle of a Latin square of order n, 1 <= m <= n, 1 <= k <= n. %H A307839 E. I. Vatutin, <a href="http://forum.boinc.ru/default.aspx?g=posts&m=92687#post92687">Discussion about properties of diagonal Latin squares at forum.boinc.ru</a> (in Russian). %H A307839 E. I. Vatutin, <a href="https://vk.com/wall162891802_1323">About the minimum and maximum number of Latin subrectangles in a diagonal Latin squares of order 8</a> (in Russian). %H A307839 Eduard Vatutin, Alexey Belyshev, Natalia Nikitina, and Maxim Manzuk, <a href="https://doi.org/10.1007/978-3-030-66895-2_9">Evaluation of Efficiency of Using Simple Transformations When Searching for Orthogonal Diagonal Latin Squares of Order 10</a>, High-Performance Computing Systems and Technologies in Sci. Res., Automation of Control and Production (HPCST 2020), Communications in Comp. and Inf. Sci. book series (CCIS, Vol. 1304) Springer (2020), 127-146. %H A307839 Eduard I. Vatutin, <a href="/A307839/a307839.txt">Proving list (best known examples)</a>. %H A307839 <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>. %e A307839 For example, the square %e A307839 0 1 2 3 4 5 6 %e A307839 4 2 6 5 0 1 3 %e A307839 3 6 1 0 5 2 4 %e A307839 6 3 5 4 1 0 2 %e A307839 1 5 3 2 6 4 0 %e A307839 5 0 4 6 2 3 1 %e A307839 2 4 0 1 3 6 5 %e A307839 has a Latin subrectangle %e A307839 . . . . . . . %e A307839 . . 6 5 0 1 3 %e A307839 . . . . . . . %e A307839 . . . . . . . %e A307839 . . . . . . . %e A307839 . . . . . . . %e A307839 . . 0 1 3 6 5 %e A307839 The total number of Latin subrectangles for this square is 2119. %Y A307839 Cf. A274806, A307163, A307164, A307840, A307841, A307842. %K A307839 nonn,more,hard %O A307839 1,4 %A A307839 _Eduard I. Vatutin_, May 01 2019 %E A307839 a(8) added by _Eduard I. Vatutin_, Oct 06 2020