This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307842 #22 Jun 13 2021 07:14:53 %S A307842 0,0,0,12,12,51,151,924 %N A307842 Maximum number of nontrivial Latin subrectangles in a diagonal Latin square of order n. %C A307842 A Latin subrectangle is an m X k Latin rectangle of a Latin square of order n, 1 <= m <= n, 1 <= k <= n. %C A307842 A nontrivial Latin subrectangle is an m X k Latin rectangle of a Latin square of order n, 1 < m < n, 1 < k < n. %H A307842 E. I. Vatutin, <a href="http://forum.boinc.ru/default.aspx?g=posts&m=92687#post92687">Discussion about properties of diagonal Latin squares at forum.boinc.ru</a> (in Russian). %H A307842 E. I. Vatutin, <a href="https://vk.com/wall162891802_1322">About the minimum and maximum number of nontrivial Latin subrectangles in a diagonal Latin squares of order 8</a> (in Russian). %H A307842 Eduard Vatutin, Alexey Belyshev, Natalia Nikitina, and Maxim Manzuk, <a href="https://doi.org/10.1007/978-3-030-66895-2_9">Evaluation of Efficiency of Using Simple Transformations When Searching for Orthogonal Diagonal Latin Squares of Order 10</a>, High-Performance Computing Systems and Technologies in Sci. Res., Automation of Control and Production (HPCST 2020), Communications in Comp. and Inf. Sci. book series (CCIS, Vol. 1304) Springer (2020), 127-146. %H A307842 Eduard I. Vatutin, <a href="/A307842/a307842.txt">Proving list (best known examples)</a>. %H A307842 <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>. %e A307842 For example, the square %e A307842 0 1 2 3 4 5 6 %e A307842 4 2 6 5 0 1 3 %e A307842 3 6 1 0 5 2 4 %e A307842 6 3 5 4 1 0 2 %e A307842 1 5 3 2 6 4 0 %e A307842 5 0 4 6 2 3 1 %e A307842 2 4 0 1 3 6 5 %e A307842 has nontrivial Latin subrectangle %e A307842 . . . . . . . %e A307842 . . 6 5 0 1 3 %e A307842 . . . . . . . %e A307842 . . . . . . . %e A307842 . . . . . . . %e A307842 . . . . . . . %e A307842 . . 0 1 3 6 5 %e A307842 The total number of Latin subrectangles for this square is 2119 and the number of nontrivial Latin subrectangles is only 151. %Y A307842 Cf. A307840, A307841. %K A307842 nonn,more,hard %O A307842 1,4 %A A307842 _Eduard I. Vatutin_, May 01 2019 %E A307842 a(8) added by _Eduard I. Vatutin_, Oct 06 2020