This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307859 #16 Feb 16 2025 08:33:55 %S A307859 24,112,189,578,1984,2125,3993,5043,9583,19197,32512,126445,149565, %T A307859 175689,225578,236883,1589949,1862935,1928125,3171174,5860526,6149405, %U A307859 11442047,16731741,60634549,75062535,134201344,177816209,1162143369,4474779517,10369035821 %N A307859 Consider the non-unitary aliquot parts, in ascending order, of a composite number. Take their sum and repeat the process deleting the minimum number and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to themselves. %H A307859 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/UnitaryDivisor.html">Unitary Divisor</a> %H A307859 Wikipedia, <a href="http://en.wikipedia.org/wiki/Unitary_divisor">Unitary divisor</a> %e A307859 Divisors of 578 are 1, 2, 17, 34, 289, 578. Non-unitary aliquot parts are 17 and 34. %e A307859 We have: %e A307859 17 + 34 = 51; %e A307859 34 + 51 = 85; %e A307859 51 + 85 = 136; %e A307859 85 + 136 = 221; %e A307859 136 + 221 = 357; %e A307859 221 + 357 = 578. %p A307859 with(numtheory):P:=proc(q,h) local a,b,c,k,n,t,v; v:=array(1..h); %p A307859 for n from 1 to q do if not isprime(n) then b:=sort([op(divisors(n))]); %p A307859 a:=[]; for k from 2 to nops(b)-1 do if gcd(b[k],n/b[k])>1 then %p A307859 a:=[op(a),b[k]]; fi; od; b:=nops(a); if b>1 then c:=0; %p A307859 for k from 1 to b do v[k]:=a[k]; c:=c+a[k]: od; %p A307859 t:=b+1; v[t]:=c; while v[t]<n do t:=t+1; v[t]:=add(v[k], k=t-b..t-1); %p A307859 od; if v[t]=n then print(n); fi; fi; fi; od; end: P(10^9,1000); %t A307859 aQ[n_] := CompositeQ[n] && Module[{s = Select[Divisors[n], GCD[#, n/#] != 1 &]}, If[Length[s] < 2, False, While[Total[s] < n, AppendTo[s, Total[s]]; s = Rest[s]]; Total[s] == n]]; Select[Range[10^4], aQ] (* _Amiram Eldar_, May 07 2019 *) %Y A307859 Cf. A002827, A034444, A246544, A247012, A247013, A248134, A258142. %K A307859 nonn %O A307859 1,1 %A A307859 _Paolo P. Lava_, May 02 2019 %E A307859 a(20)-a(31) from _Amiram Eldar_, May 07 2019