This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307869 #42 Aug 10 2023 03:28:47 %S A307869 1,4,2,7,6,5,6,5,3,5,4,2,4,8,3,9,8,8,3,1,1,7,5,2,3,9,3,9,6,8,7,3,2,7, %T A307869 9,0,4,0,9,3,7,3,3,6,2,8,0,7,4,4,3,9,2,7,4,2,2,4,7,4,1,4,3,6,7,3,4,4, %U A307869 2,9,8,8,3,4,1,1,5,3,8,9,4,0,7,4,8,3,0,3,5,2,6,0,8,3,7,4,0,5,1,7,7,9,3,2,5 %N A307869 Decimal expansion of the asymptotic mean of d(k)/2^omega(k), where d(k) is the number of divisors of k (A000005) and omega(k) is the number of its distinct prime divisors (A001221). %C A307869 Also the asymptotic mean of ratio between the number of divisors and the number of unitary divisors of the integers. %H A307869 Ouarda Bouakkaz and Abdallah Derbal, <a href="https://doi.org/10.7546/nntdm.2023.29.3.445-453">The mean value of the function d(n)/d*(n) in arithmetic progressions</a>, Notes on Number Theory and Discrete Mathematics, Vol. 29, No. 3 (2023), pp. 445-453. %H A307869 Mihoub Bouderbala, <a href="https://doi.org/10.46298/cm.10467">On a sum of a multiplicative function linked to the divisor function over the set of integers B-multiple of 5</a>, Communications in Mathematics, Vol. 31, No. 1 (2023), pp. 369-374; <a href="https://arxiv.org/abs/2212.05549v2">arXiv preprint</a>, arXiv:2212.05549 [math.NT], 2022. %H A307869 Abdallah Derbal and Meselem Karras, <a href="https://doi.org/10.1016/j.crma.2016.03.007">Valeurs moyennes d'une fonction liƩe aux diviseurs d'un nombre entier</a>, C. R. Acad. Sci. Paris, Ser. I, Vol. 354, No. 6 (2016), pp. 555-558. %H A307869 Mark Kac, <a href="https://web.archive.org/web/20220609160228/http://www.gibbs.if.usp.br/~marchett/estocastica/MarkKac-Statistical-Independence.pdf">Statistical Independence in Probability, Analysis and Number Theory</a>, Carus Monograph 12, Math. Assoc. Amer., 1959, p. 79. %F A307869 Equals Product_{p prime} 1 + 1/(2 * p * (p-1)). %F A307869 Equals (Pi^2/6) * Product_{p prime} 1 - 1/(2 * p^2) + 1/(2 * p^3). %e A307869 1.42765653542483988311752393968732790409373362807443... %t A307869 $MaxExtraPrecision = 1000; m = 1000; c = LinearRecurrence[{4, -6, 4}, {0, 4, 12}, m]; RealDigits[Exp[NSum[Indexed[c, n]*PrimeZetaP[n]/n/2^n, {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]] %o A307869 (PARI) prodeulerrat(1 + 1/(2 * p * (p-1))) \\ _Amiram Eldar_, Mar 17 2021 %Y A307869 Cf. A000005, A001221, A034444, A307870. %K A307869 nonn,cons %O A307869 1,2 %A A307869 _Amiram Eldar_, May 02 2019 %E A307869 More terms from _Vaclav Kotesovec_, May 29 2020