This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307872 #27 Jan 14 2024 11:25:40 %S A307872 0,0,1,1,2,4,5,7,11,13,17,23,27,33,42,48,57,69,78,90,106,118,134,154, %T A307872 170,190,215,235,260,290,315,345,381,411,447,489,525,567,616,658,707, %U A307872 763,812,868,932,988,1052,1124,1188,1260,1341,1413,1494,1584,1665 %N A307872 Sum of the smallest parts in the partitions of n into 3 parts. %H A307872 Michael De Vlieger, <a href="/A307872/b307872.txt">Table of n, a(n) for n = 1..3000</a> %H A307872 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A307872 a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} k. %F A307872 Conjectures from _Colin Barker_, May 02 2019: (Start) %F A307872 G.f.: x^3 / ((1 - x)^4*(1 + x)*(1 + x + x^2)^2). %F A307872 a(n) = a(n-1) + a(n-2) + a(n-3) - 2*a(n-4) - 2*a(n-5) + a(n-6) + a(n-7) + a(n-8) - a(n-9) for n > 9. %F A307872 (End) %F A307872 a(n) = ((-1)^n*(-1+(-1)^r)+2*r*((-1)^(n+r)+(1+r)*(1+2*n-4*r)))/16, where r = floor(n/3). - _Wesley Ivan Hurt_, Oct 24 2021 %e A307872 Figure 1: The partitions of n into 3 parts for n = 3, 4, ... %e A307872 1+1+8 %e A307872 1+1+7 1+2+7 %e A307872 1+2+6 1+3+6 %e A307872 1+1+6 1+3+5 1+4+5 %e A307872 1+1+5 1+2+5 1+4+4 2+2+6 %e A307872 1+1+4 1+2+4 1+3+4 2+2+5 2+3+5 %e A307872 1+1+3 1+2+3 1+3+3 2+2+4 2+3+4 2+4+4 %e A307872 1+1+1 1+1+2 1+2+2 2+2+2 2+2+3 2+3+3 3+3+3 3+3+4 ... %e A307872 ----------------------------------------------------------------------- %e A307872 n | 3 4 5 6 7 8 9 10 ... %e A307872 ----------------------------------------------------------------------- %e A307872 a(n) | 1 1 2 4 5 7 11 13 ... %e A307872 ----------------------------------------------------------------------- %t A307872 Table[Sum[Sum[k, {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}] %t A307872 Table[Total[IntegerPartitions[n,{3}][[;;,-1]]],{n,100}] (* _Harvey P. Dale_, Jan 14 2024 *) %o A307872 (PARI) a(n) = sum(k=1, n\3, sum(i=k, (n-k)\2, k)); \\ _Michel Marcus_, May 02 2019 %Y A307872 Cf. A069905. %K A307872 nonn,easy %O A307872 1,5 %A A307872 _Wesley Ivan Hurt_, May 02 2019