This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307883 #56 May 13 2024 19:11:07 %S A307883 1,1,1,1,2,1,1,3,6,1,1,4,13,20,1,1,5,22,63,70,1,1,6,33,136,321,252,1, %T A307883 1,7,46,245,886,1683,924,1,1,8,61,396,1921,5944,8989,3432,1,1,9,78, %U A307883 595,3606,15525,40636,48639,12870,1,1,10,97,848,6145,33876,127905,281488,265729,48620,1 %N A307883 Square array read by descending antidiagonals: T(n, k) where column k is the expansion of 1/sqrt(1 - 2*(k+1)*x + ((k-1)*x)^2). %C A307883 Column k is the diagonal of the rational function 1 / ((1-x)*(1-y) - k*x*y). - _Seiichi Manyama_, Jul 11 2020 %C A307883 More generally, column k is the diagonal of the rational function r / ((1-r*x)*(1-r*y) + r-1 - (k+r-1)*r*x*y) for any nonzero real number r. - _Seiichi Manyama_, Jul 22 2020 %H A307883 Seiichi Manyama, <a href="/A307883/b307883.txt">Antidiagonals n = 0..139, flattened</a> %F A307883 T(n,k) is the coefficient of x^n in the expansion of (1 + (k+1)*x + k*x^2)^n. %F A307883 T(n,k) = Sum_{j=0..n} k^j * binomial(n,j)^2. %F A307883 T(n,k) = Sum_{j=0..n} (k-1)^(n-j) * binomial(n,j) * binomial(n+j,j). %F A307883 n * T(n,k) = (k+1) * (2*n-1) * T(n-1,k) - (k-1)^2 * (n-1) * T(n-2,k). %F A307883 T(n,k) = hypergeom([-k, -k], [1], n - k), (triangular form). - _Detlef Meya_, May 13 2024 %e A307883 Square array begins: %e A307883 1, 1, 1, 1, 1, 1, 1, ... %e A307883 1, 2, 3, 4, 5, 6, 7, ... %e A307883 1, 6, 13, 22, 33, 46, 61, ... %e A307883 1, 20, 63, 136, 245, 396, 595, ... %e A307883 1, 70, 321, 886, 1921, 3606, 6145, ... %e A307883 1, 252, 1683, 5944, 15525, 33876, 65527, ... %e A307883 1, 924, 8989, 40636, 127905, 324556, 712909, ... %e A307883 Seen as a triangle T(n, k): %e A307883 [0] 1; %e A307883 [1] 1, 1; %e A307883 [2] 1, 2, 1; %e A307883 [3] 1, 3, 6, 1; %e A307883 [4] 1, 4, 13, 20, 1; %e A307883 [5] 1, 5, 22, 63, 70, 1; %e A307883 [6] 1, 6, 33, 136, 321, 252, 1; %e A307883 [7] 1, 7, 46, 245, 886, 1683, 924, 1; %e A307883 [8] 1, 8, 61, 396, 1921, 5944, 8989, 3432, 1; %e A307883 [9] 1, 9, 78, 595, 3606, 15525, 40636, 48639, 12870, 1; %p A307883 # Seen as a triangle read by rows: %p A307883 T := (n, k) -> simplify(hypergeom([-k, -k], [1], n - k)): %p A307883 seq(lprint(seq(T(n, k), k = 0..n)), n = 0..9); # _Peter Luschny_, May 13 2024 %t A307883 T[n_, k_] := Sum[If[k == j == 0, 1, k^j] * Binomial[n, j]^2, {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Amiram Eldar_, May 13 2021 *) %t A307883 (* Seen as a triangle read by rows: *) %t A307883 T[n_, k_] := HypergeometricPFQ[{-k, -k}, {1}, n - k]; %t A307883 Flatten[Table[T[n, k], {n, 0, 10}, {k, 0, n}]] (* _Detlef Meya_, May 13 2024 *) %Y A307883 Columns k=0..6 give A000012, A000984, A001850, A069835, A084771, A084772, A098659. %Y A307883 Main diagonal gives A187021. %Y A307883 T(n,n+1) gives A335309. %Y A307883 Cf. A307855, A307884, A307910. %K A307883 nonn,tabl %O A307883 0,5 %A A307883 _Seiichi Manyama_, May 02 2019