cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307890 Prime centuries with at least one prime year in each decade and exactly one prime year in decades 1 to 8.

This page as a plain text file.
%I A307890 #11 May 17 2024 00:32:54
%S A307890 3677,4073,16447,118463,211217,357131,368153,582017,932413,1172777,
%T A307890 1239443,2284027,2421473,3900931,4943777,5046053,6850463,6966059,
%U A307890 8046347,10448783,11548777,12849937,15198811,16031237,17315087,19443679,20075687,20434811,20462861,20614667
%N A307890 Prime centuries with at least one prime year in each decade and exactly one prime year in decades 1 to 8.
%C A307890 In other words, prime numbers p such that there are ten consecutive primes between p*100-100 and p*100, each of them in a different decade. (The P-div-10s are all different.) - _Don Reble_, May 02 2019
%e A307890 4073 is in the sequence, representing the prime sequence 407203, 407207, 407219, 407221, 407233, 407249, 407257, 407263, 407273, 407287, 407291, 407299, with 2 primes in decades 0 and 9, and 1 prime in decades 1 to 8. - _R. J. Mathar_, May 03 2019
%p A307890 isA307890 := proc(n)
%p A307890     local p, dec ;
%p A307890     if not isprime(n) then
%p A307890         false;
%p A307890     else
%p A307890         p := 100*(n-1) ;
%p A307890         p := prevprime(p+10) ;
%p A307890         for dec from 0 to 9 do
%p A307890             if modp(floor(p/10), 10) <> dec then
%p A307890                 return false;
%p A307890             end if;
%p A307890             p := nextprime(p) ;
%p A307890         end do:
%p A307890         true ;
%p A307890     end if;
%p A307890 end proc:
%p A307890 for i from 1 do
%p A307890     p := ithprime(i) ;
%p A307890     if isA307890(p) then
%p A307890         printf("%d, \n", p) ;
%p A307890     end if;
%p A307890 end do: # _R. J. Mathar_, May 03 2019
%Y A307890 Cf. A156115, super set of the primes in A103608.
%K A307890 nonn,less
%O A307890 1,1
%A A307890 _Zak Seidov_, Feb 27 2009