This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307897 #33 Aug 06 2023 01:14:10 %S A307897 1,0,0,0,0,0,1,0,0,0,1,0,1,0,0,1,1,0,1,0,1,1,1,0,1,1,1,1,1,0,2,1,1,1, %T A307897 1,1,2,1,1,1,2,1,2,1,1,2,2,1,2,1,2,2,2,1,2,2,2,2,2,1,3,2,2,2,2,2,3,2, %U A307897 2,2,3,2,3,2,2,3,3,2,3,2,3,3,3,2,3,3,3,3,3,2,4,3,3,3,3,3,4,3,3,3,4 %N A307897 Duplicate of A008651. %C A307897 Meyer's generating function h(t,G) generates the sequence of the dimensions of the spaces of G-invariant harmonic polynomials of each degree, where G is a point group on three-dimensional Euclidean space. For G=I, the icosahedral rotation group, the generating function gives rise to this sequence. See Table 1, p. 143. %H A307897 Burnett Meyer, <a href="https://doi.org/10.4153/CJM-1954-016-2">On the symmetries of spherical harmonics</a>, Canadian Journal of Mathematics 6 (1954): 135-157. %F A307897 G.f.: (1 + t^15) / ( (1 - t^10) * (1 - t^6) ). %F A307897 a(n) = -a(n-1) + a(n-3) + a(n-4) + a(n-5) + a(n-6) - a(n-8) - a(n-9) for n>8. - _Colin Barker_, May 04 2019 %t A307897 CoefficientList[ Series[(1 - t^10)^(-1) (1 - t^6)^(-1) (1 + t^15), {t, 0, 100}], t] %o A307897 (PARI) Vec((1 + x - x^3 - x^4 - x^5 + x^7 + x^8) / ((1 - x)^2*(1 + x)*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)) + O(x^60)) \\ _Colin Barker_, May 04 2019 %K A307897 dead %O A307897 0,31 %A A307897 _William Lionheart_, May 04 2019