This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307910 #21 May 07 2019 11:00:21 %S A307910 1,1,0,1,1,0,1,2,3,0,1,3,8,7,0,1,4,15,32,19,0,1,5,24,81,136,51,0,1,6, %T A307910 35,160,459,592,141,0,1,7,48,275,1120,2673,2624,393,0,1,8,63,432,2275, %U A307910 8064,15849,11776,1107,0,1,9,80,637,4104,19375,59136,95175,53344,3139,0 %N A307910 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 2*k*x + k*(k-4)*x^2). %H A307910 Seiichi Manyama, <a href="/A307910/b307910.txt">Antidiagonals n = 0..139, flattened</a> %F A307910 A(n,k) is the coefficient of x^n in the expansion of (1 + k*x + k*x^2)^n. %F A307910 A(n,k) = Sum_{j=0..floor(n/2)} k^(n-j) * binomial(n,j) * binomial(n-j,j) = Sum_{j=0..floor(n/2)} k^(n-j) * binomial(n,2*j) * binomial(2*j,j). %F A307910 n * A(n,k) = k * (2*n-1) * A(n-1,k) - k * (k-4) * (n-1) * A(n-2,k). %e A307910 Square array begins: %e A307910 1, 1, 1, 1, 1, 1, 1, ... %e A307910 0, 1, 2, 3, 4, 5, 6, ... %e A307910 0, 3, 8, 15, 24, 35, 48, ... %e A307910 0, 7, 32, 81, 160, 275, 432, ... %e A307910 0, 19, 136, 459, 1120, 2275, 4104, ... %e A307910 0, 51, 592, 2673, 8064, 19375, 40176, ... %e A307910 0, 141, 2624, 15849, 59136, 168125, 400896, ... %e A307910 0, 393, 11776, 95175, 439296, 1478125, 4053888, ... %t A307910 A[n_, k_] := k^n Hypergeometric2F1[(1-n)/2, -n/2, 1, 4/k]; A[0, _] = 1; A[_, 0] = 0; Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* _Jean-François Alcover_, May 07 2019 *) %Y A307910 Columns k=0..4 give A000007, A002426, A006139, A122868, A059304. %Y A307910 Main diagonal gives A092366. %Y A307910 Cf. A107267, A292627, A307819, A307847, A307855, A307883. %K A307910 nonn,tabl %O A307910 0,8 %A A307910 _Seiichi Manyama_, May 05 2019