cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307937 Numbers that can be written as the sum of four or more consecutive squares in more than one way.

This page as a plain text file.
%I A307937 #16 May 07 2019 07:04:25
%S A307937 3655,3740,4510,4760,5244,5434,5915,7230,7574,8415,11055,11900,12524,
%T A307937 14905,17484,18879,19005,19855,20449,20510,21790,22806,23681,25580,
%U A307937 25585,27230,27420,28985,31395,34224,37114,39606,41685,42419,44919,45435,45955,48026,48139,48225,49015,53941,57164,62006
%N A307937 Numbers that can be written as the sum of four or more consecutive squares in more than one way.
%C A307937 Numbers that are in A174071 in two or more ways.
%C A307937 The first number with more than two representations as a sum of four or more consecutive positive squares is 147441 = 18^2 + ... + 76^2 = 29^2 + ... + 77^2 = 85^2 + ... + 101^2.
%C A307937 If x = 2*A049629(n) and y = A007805(n) for n >= 1 (satisfying the Pell equation x^2 - 5*y^2 = -1), then the sequence contains 5*x^2+10 = Sum_{(5*y-3)/2 <= i <= (5*y+3)/2} i^2 = Sum_{x-2 <= i <= x+2} i^2 = 25*y^2 + 5.
%H A307937 Robert Israel, <a href="/A307937/b307937.txt">Table of n, a(n) for n = 1..10000</a>
%e A307937 a(1) = 3655 is in the sequence because 3655 = 8^2 + ... + 22^2 = 25^2 + ... + 29^2.
%p A307937 N:= 10^5: # to get all terms <= N
%p A307937 R:= 'R':
%p A307937 dups:= NULL:
%p A307937 for m from 4 while m*(m+1)*(2*m+1)/6 <= N do
%p A307937    for k from 1 do
%p A307937        v:= m*(6*k^2 + 6*k*m + 2*m^2 - 6*k - 3*m + 1)/6;
%p A307937        if v > N then break fi;
%p A307937        if assigned(R[v]) then
%p A307937          dups:= dups, v;
%p A307937        else
%p A307937          R[v]:= [k, k+m-1];
%p A307937        fi;
%p A307937 od od:
%p A307937 sort(convert({dups},list));
%t A307937 M = 10^5;
%t A307937 dups = {}; Clear[rQ]; rQ[_] = False;
%t A307937 For[m = 4, m(m+1)(2m+1)/6 <= M, m++, For[k = 1, True, k++, v = m(6k^2 + 6k m + 2m^2 - 6k - 3m + 1)/6; If[v > M, Break[]]; If[rQ[v], AppendTo[dups, v], rQ[v] = True]]];
%t A307937 dups // Sort (* _Jean-François Alcover_, May 07 2019, after _Robert Israel_ *)
%Y A307937 Cf. A007805, A049629, A174071.
%K A307937 nonn
%O A307937 1,1
%A A307937 _Robert Israel_, May 06 2019