cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307945 Exponential convolution of A015128 with themselves.

This page as a plain text file.
%I A307945 #8 May 08 2019 23:11:15
%S A307945 1,4,16,64,252,968,3616,13120,46432,160772,545856,1821056,5979520,
%T A307945 19350552,61795968,194964672,608261628,1878140024,5743681784,
%U A307945 17408223328,52320105080,156011658272,461763417056,1357182242560,3962591708576,11497241014652
%N A307945 Exponential convolution of A015128 with themselves.
%H A307945 Robert Israel, <a href="/A307945/b307945.txt">Table of n, a(n) for n = 0..2994</a>
%F A307945 a(n) = Sum_{k=0..n} binomial(n,k) * A015128(k) * A015128(n-k).
%F A307945 a(n) ~ 2^(n-4) * exp(Pi*sqrt(2*n)) / n^2.
%p A307945 S:= series(1/JacobiTheta4(0,q),q,101):
%p A307945 f:= n -> add(binomial(n,k)*coeff(S,q,k)*coeff(S,q,n-k),k=0..n):
%p A307945 map(f, [$0..100]); # _Robert Israel_, May 08 2019
%t A307945 A015128[n_]:=Sum[PartitionsP[n-k]*PartitionsQ[k], {k, 0, n}]; Table[Sum[Binomial[n, k]*A015128[k]*A015128[n-k], {k, 0, n}], {n, 0, 25}]
%Y A307945 Cf. A015128, A266497, A294499, A307755, A307756.
%K A307945 nonn
%O A307945 0,2
%A A307945 _Vaclav Kotesovec_, May 07 2019