cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307981 Number of ways to write n as x^3 + 2*y^3 + 3*z^3 + w*(w+1)*(w+2)/6, where x,y,z,w are nonnegative integers.

Original entry on oeis.org

1, 2, 2, 3, 4, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 2, 3, 2, 1, 5, 4, 1, 4, 4, 4, 4, 5, 6, 3, 5, 5, 2, 4, 4, 3, 5, 5, 3, 3, 4, 3, 3, 2, 5, 3, 3, 5, 2, 2, 3, 3, 5, 2, 4, 4, 3, 3, 5, 6, 3, 5, 6, 3, 4, 4, 5, 7, 5, 4, 2, 3, 2, 3, 2, 4, 3, 3, 3, 3, 4, 5, 6, 8, 7, 7, 6, 7, 8, 6, 7, 4, 5, 4, 4, 2, 2, 4, 4, 5, 4
Offset: 0

Views

Author

Zhi-Wei Sun, May 08 2019

Keywords

Comments

Conjecture: a(n) > 0 for every nonnegative integer n. In other words, we have {x^3 + 2*y^3 + 3*z^3 + w*(w+1)*(w+2)/6: x,y,z,w = 0,1,2,...} = {0,1,2,...}.
We have verified a(n) > 0 for all n = 0..2*10^6.

Examples

			a(19) = 1 with 19 = 0^3 + 2*2^3 + 3*1^3 + 0*1*2/6.
a(22) = 1 with 22 = 0^3 + 2*1^3 + 3*0^3 + 4*5*6/6.
a(112) = 1 with 112 = 3^3 + 2*0^3 + 3*3^3 + 2*3*4/6.
a(158) = 1 with 158 = 3^3 + 2*4^3 + 3*1^3 + 0*1*2/6.
a(791) = 1 with 791 = 1^3 + 2*5^3 + 3*5^3 + 9*10*11/6.
a(956) = 1 with 956 = 9^3 + 2*0^3 + 3*4^3 + 5*6*7/6.
a(6363) = 1 with 6363 = 10^3 + 2*13^3 + 3*0^3 + 17*18*19/6.
		

Crossrefs

Programs

  • Mathematica
    CQ[n_]:=CQ[n]=IntegerQ[n^(1/3)];f[w_]:=f[w]=Binomial[w+2,3];
    tab={};Do[r=0;w=0;Label[bb];If[f[w]>n,Goto[aa]];Do[If[CQ[n-f[w]-2y^3-3z^3],r=r+1],{y,0,((n-f[w])/2)^(1/3)},{z,0,((n-f[w]-2y^3)/3)^(1/3)}];w=w+1;Goto[bb];Label[aa];tab=Append[tab,r],{n,0,100}];Print[tab]