This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A307988 #17 May 25 2019 18:04:58 %S A307988 1,2,1,1,2,0,4,7,4,1,11,36,42,18,2,14,121,344,259,48,2,29,518,2750, %T A307988 4068,1652,172,4,72,2059,21924,65461,52368,10962,588,9,127,8136, %U A307988 174986,1048950,1677940,699288,74998,2034,14,242,32893,1398576,16778791,53686584,44738782,9587880,524475,7308,24 %N A307988 T(n, k) the number of A-polynomials in F_2^k[T] of degree n, array read by descending antidiagonals. %H A307988 Alp Bassa, Ricardo Menares, <a href="https://arxiv.org/abs/1905.08345">Enumeration of a special class of irreducible polynomials in characteristic 2</a>, arXiv:1905.08345 [math.NT], 2019. %H A307988 Harald Niederreiter, <a href="https://doi.org/10.1007/BF01810295">An enumeration formula for certain irreducible polynomials with an application to the construction of irreducible polynomials over the binary field</a>, Applicable Algebra in Engineering, Communication and Computing, vol.1, no.2, pp.119-124, (September-1990). %F A307988 T(n, k) = Sum_{d|n} moebius(m/d)*q^(2^k*d) + 1 - alpha^(r*2^k*d) - alphabar^(r*2^k*d), where n = 2^k*m, m odd, alpha = (-1+sqrt(-7))/2 and alphabar = (-1-sqrt(-7))/2 is the conjugate of alpha. %e A307988 Array begins: %e A307988 1 2 1 4 11 14 29 %e A307988 1 2 7 36 121 518 2059 %e A307988 0 4 42 344 2750 21924 174986 %e A307988 1 18 259 4068 65461 1048950 16778791 %e A307988 2 48 1652 52368 1677940 53686584 1717985404 %e A307988 2 172 10962 699288 44738782 2863291620 183251786538 %e A307988 4 588 74998 9587880 1227132434 157072960476 20105353937606 %o A307988 (PARI) f(n) = 2 * real(((-1 + quadgen(-28)) / 2)^n); %o A307988 a(n, r) = {my(k = valuation(n, 2), m = n/2^k, q = 2^r); sumdiv(m, d, moebius(m/d)*(q^(2^k*d)+1-f(r*2^k*d)))/(4*n);} %Y A307988 Cf. A175390 (1st column). %Y A307988 Cf. A002249 or A077021 (sequences related to alpha). %K A307988 nonn,tabl %O A307988 1,2 %A A307988 _Michel Marcus_, May 22 2019