cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307995 G.f. A(x) satisfies: A(x) = x + x^2 + x^3 + x^4 + x^5 * (1 + A(x) + A(x^2) + A(x^3) + ...).

This page as a plain text file.
%I A307995 #5 May 09 2019 15:00:15
%S A307995 1,1,1,1,1,1,2,2,3,2,4,3,5,5,5,5,8,6,9,8,10,9,13,10,14,14,15,14,20,16,
%T A307995 21,20,24,21,28,22,30,30,31,32,39,31,41,38,48,40,52,42,54,59,55,53,67,
%U A307995 57,78,65,75,68,85,84,91,86,90,86,124,92,109,107,116,131,133,110,139,131,171
%N A307995 G.f. A(x) satisfies: A(x) = x + x^2 + x^3 + x^4 + x^5 * (1 + A(x) + A(x^2) + A(x^3) + ...).
%C A307995 Shifts left 5 places under inverse Moebius transform.
%F A307995 G.f.: x + x^2 + x^3 + x^4 + x^5 * (1 + Sum_{n>=1} a(n)*x^n/(1 - x^n)).
%F A307995 a(1) = ... = a(5) = 1; a(n+5) = Sum_{d|n} a(d).
%t A307995 terms = 75; A[_] = 0; Do[A[x_] = x + x^2 + x^3 + x^4 + x^5 (1 + Sum[A[x^k], {k, 1, terms}]) + O[x]^(terms + 1) // Normal, terms + 1]; Rest[CoefficientList[A[x], x]]
%t A307995 a[n_] := a[n] = SeriesCoefficient[x + x^2 + x^3 + x^4 + x^5 (1 + Sum[a[k] x^k/(1 - x^k), {k, 1, n - 1}]), {x, 0, n}]; Table[a[n], {n, 1, 75}]
%t A307995 a[n_] := a[n] = Sum[a[d], {d, Divisors[n - 5]}]; a[1] = a[2] = a[3] = a[4] = a[5] = 1; Table[a[n], {n, 1, 75}]
%Y A307995 Cf. A003238, A007439, A307993, A307994.
%K A307995 nonn
%O A307995 1,7
%A A307995 _Ilya Gutkovskiy_, May 09 2019