cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307997 a(n) is the sum of A023896(k) over the totatives of n.

This page as a plain text file.
%I A307997 #23 Jul 31 2020 01:53:07
%S A307997 1,1,2,4,9,11,25,35,53,52,109,87,188,174,218,255,432,301,622,492,636,
%T A307997 633,1109,725,1288,1113,1468,1287,2275,1121,2801,2305,2598,2499,3227,
%U A307997 2266,4760,3550,4229,3449,6556,3311,7628,5527,5846,6199,10017,5736,10453,7282,9654,8832,14451,8143,13060
%N A307997 a(n) is the sum of A023896(k) over the totatives of n.
%C A307997 a(n) <= A213544(n-1) for n >= 2, with equality if and only if n is prime. - _Robert Israel_, May 10 2019
%H A307997 Robert Israel, <a href="/A307997/b307997.txt">Table of n, a(n) for n = 1..10000</a>
%H A307997 Robert Israel, <a href="/A307997/a307997.png">Plot of a(n)/n^3 for n=3 to 20000</a>
%F A307997 a(n) = Sum_{1<=k<=n; gcd(k,n)=1} A023896(k).
%F A307997 a(n) = Sum_{k=1..n} k*A143620(n,k).
%e A307997 a(6) = 11 because the totatives of 6, i.e. the numbers from 1 to 6 that are coprime to 6, are 1 and 5, A023896(1) = 1 and A023896(5) = 1+2+3+4=10, and 1+10=11.
%p A307997 A023896:= proc(n) option remember; convert(select(t -> igcd(t,n)=1, [$1..n]),`+`) end proc:
%p A307997 f:= n -> convert(map(A023896, select(t -> igcd(t,n)=1, [$1..n])),`+`):
%p A307997 map(f, [$1..100]);
%t A307997 A023896[n_] := If[n == 1, 1, (n/2) EulerPhi[n]];
%t A307997 a[n_] := Sum[Boole[GCD[n, k] == 1] A023896[k], {k, 1, n}];
%t A307997 Array[a, 100] (* _Jean-François Alcover_, Jul 31 2020 *)
%o A307997 (PARI) s(n) = if(n<2, n>0, n*eulerphi(n)/2); \\ A023896
%o A307997 a(n) = sum(k=1, n, if (gcd(n,k)==1, s(k))); \\ _Michel Marcus_, May 10 2019
%Y A307997 Cf. A023896, A143620, A213544.
%K A307997 nonn,look
%O A307997 1,3
%A A307997 _J. M. Bergot_ and _Robert Israel_, May 09 2019