A307998 Irregular triangle read by rows, n > 0 and k = 0..PrimePi(n): T(n, k) is the number of Q-linearly independent subsets of { log(1), ..., log(n) } with k elements (where PrimePi corresponds to A000720, the prime-counting function).
1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 4, 5, 2, 1, 5, 9, 5, 1, 6, 14, 14, 5, 1, 7, 18, 19, 7, 1, 8, 24, 28, 11, 1, 9, 32, 49, 25, 1, 10, 41, 81, 74, 25, 1, 11, 51, 111, 108, 38, 1, 12, 62, 162, 219, 146, 38, 1, 13, 74, 221, 351, 276, 84, 1, 14, 87, 293, 526, 457, 150
Offset: 1
Examples
The triangle begins: n\k| 0 1 2 3 4 5 ---+----------------------- 1| 1 2| 1 1 3| 1 2 1 4| 1 3 2 5| 1 4 5 2 6| 1 5 9 5 7| 1 6 14 14 5 8| 1 7 18 19 7 9| 1 8 24 28 11 10| 1 9 32 49 25 11| 1 10 41 81 74 25 ... For n = 4: - T(4, 0) = #{ {} } = 1, - T(4, 1) = #{ {log(2)}, {log(3)}, {log(4)} } = 3, - T(4, 2) = #{ {log(2), log(3)}, {log(3), log(4)} } = 2, - log(2) = log(4)/2, so log(2) and log(4) are Q-linearly dependent.
Links
- Rémy Sigrist, PARI program for A307998
Programs
-
PARI
See Links section.
Comments