A308003 A modified Sisyphus function: a(n) = concatenation of (number of even digits in n) (number of digits in n) (number of odd digits in n).
110, 11, 110, 11, 110, 11, 110, 11, 110, 11, 121, 22, 121, 22, 121, 22, 121, 22, 121, 22, 220, 121, 220, 121, 220, 121, 220, 121, 220, 121, 121, 22, 121, 22, 121, 22, 121, 22, 121, 22, 220, 121, 220, 121, 220, 121, 220, 121, 220, 121, 121, 22, 121, 22, 121
Offset: 0
Examples
11 has 2 digits, both odd, so a(11)=22 (leading zeros are omitted). 12 has 2 digits, one even and one odd, so a(12)=121. Then a(121) = 132.
References
- M. E. Coppenbarger, Iterations of a modified Sisyphus function, Fib. Q., 56 (No. 2, 2018), 130-141.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..28000
Crossrefs
Programs
-
Maple
# Maple code based on R. J. Mathar's code for A171797: nevenDgs := proc(n) local a, d; a := 0 ; for d in convert(n,base,10) do if type(d,'even') then a :=a +1 ; end if; end do; a ; end proc: cat2 := proc(a,b) local ndigsb; ndigsb := max(ilog10(b)+1,1) ; a*10^ndigsb+b ; end: catL := proc(L) local a, i; a := op(1,L) ; for i from 2 to nops(L) do a := cat2(a,op(i,L)) ; end do; a; end proc: A055642 := proc(n) max(1,ilog10(n)+1) ; end proc: A308003 := proc(n) local n1,n2 ; n1 := A055642(n) ; n2 := nevenDgs(n) ; catL([n2,n1,n1-n2]) ; end proc: seq(A308003(n),n=0..80) ;
-
Python
def a(n): s = str(n) e = sum(1 for c in s if c in "02468") return int(str(e) + str(len(s)) + str(len(s)-e)) print([a(n) for n in range(55)]) # Michael S. Branicky, Mar 29 2022
Comments