cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308003 A modified Sisyphus function: a(n) = concatenation of (number of even digits in n) (number of digits in n) (number of odd digits in n).

Original entry on oeis.org

110, 11, 110, 11, 110, 11, 110, 11, 110, 11, 121, 22, 121, 22, 121, 22, 121, 22, 121, 22, 220, 121, 220, 121, 220, 121, 220, 121, 220, 121, 121, 22, 121, 22, 121, 22, 121, 22, 121, 22, 220, 121, 220, 121, 220, 121, 220, 121, 220, 121, 121, 22, 121, 22, 121
Offset: 0

Views

Author

N. J. A. Sloane, May 12 2019

Keywords

Comments

If we start with n and repeatedly apply the map i -> a(i), we eventually reach 132 (see A073054).

Examples

			11 has 2 digits, both odd, so a(11)=22 (leading zeros are omitted).
12 has 2 digits, one even and one odd, so a(12)=121. Then a(121) = 132.
		

References

  • M. E. Coppenbarger, Iterations of a modified Sisyphus function, Fib. Q., 56 (No. 2, 2018), 130-141.

Crossrefs

A073054 gives steps to reach 132.

Programs

  • Maple
    # Maple code based on R. J. Mathar's code for A171797:
    nevenDgs := proc(n) local a, d; a := 0 ; for d in convert(n,base,10) do if type(d,'even') then a :=a +1 ; end if; end do; a ; end proc:
    cat2 := proc(a,b) local ndigsb; ndigsb := max(ilog10(b)+1,1) ; a*10^ndigsb+b ; end:
    catL := proc(L) local a, i; a := op(1,L) ; for i from 2 to nops(L) do a := cat2(a,op(i,L)) ; end do; a; end proc:
    A055642 := proc(n) max(1,ilog10(n)+1) ; end proc:
    A308003 := proc(n) local n1,n2 ; n1 := A055642(n) ; n2 := nevenDgs(n) ; catL([n2,n1,n1-n2]) ; end proc:
    seq(A308003(n),n=0..80) ;
  • Python
    def a(n):
        s = str(n)
        e = sum(1 for c in s if c in "02468")
        return int(str(e) + str(len(s)) + str(len(s)-e))
    print([a(n) for n in range(55)]) # Michael S. Branicky, Mar 29 2022