A308005 A modified Sisyphus function: a(n) = concatenation of (number of odd digits in n) (number of digits in n) (number of even digits in n).
11, 110, 11, 110, 11, 110, 11, 110, 11, 110, 121, 220, 121, 220, 121, 220, 121, 220, 121, 220, 22, 121, 22, 121, 22, 121, 22, 121, 22, 121, 121, 220, 121, 220, 121, 220, 121, 220, 121, 220, 22, 121, 22, 121, 22, 121, 22, 121, 22, 121, 121, 220, 121, 220, 121, 220, 121, 220, 121, 220, 22, 121, 22, 121, 22
Offset: 0
Examples
11 has 2 digits, both odd, so a(11)=220. 12 has 2 digits, one even and one odd, so a(12)=121. Then a(121) = 231, a fixed point. 22 has two digits, both even, so 22 -> 22, another fixed point (leading zeros are omitted).
References
- M. E. Coppenbarger, Iterations of a modified Sisyphus function, Fib. Q., 56 (No. 2, 2018), 130-141.
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Maple
Maple code based on R. J. Mathar's code for A171797: nevenDgs := proc(n) local a, d; a := 0 ; for d in convert(n, base, 10) do if type(d, 'even') then a :=a +1 ; end if; end do; a ; end proc: cat2 := proc(a, b) local ndigsb; ndigsb := max(ilog10(b)+1, 1) ; a*10^ndigsb+b ; end: catL := proc(L) local a, i; a := op(1, L) ; for i from 2 to nops(L) do a := cat2(a, op(i, L)) ; end do; a; end proc: A055642 := proc(n) max(1, ilog10(n)+1) ; end proc: A308005 := proc(n) local n1, n2 ; n1 := A055642(n) ; n2 := nevenDgs(n) ; catL([n1-n2, n1, n2]) ; end proc: [seq(A308005(n), n=0..80)];
Comments