cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308041 Decimal expansion of lim_{m->oo} (1/log(m))*Sum_{k=1..m} 1/usigma(k), where usigma(k) is the sum of unitary divisors of k (A034448).

Original entry on oeis.org

7, 6, 8, 7, 1, 8, 3, 6, 2, 4, 4, 6, 4, 8, 5, 1, 9, 8, 6, 7, 2, 7, 3, 4, 3, 3, 2, 4, 5, 5, 3, 5, 0, 5, 2, 5, 2, 3, 4, 2, 5, 5, 7, 4, 0, 4, 1, 1, 9, 0, 4, 1, 1, 0, 7, 0, 1, 5, 4, 1, 3, 5, 2, 9, 3, 4, 8, 6, 0, 7, 7, 6, 8, 3, 3, 7, 9, 0, 8, 0, 3, 9, 3, 3, 2, 8, 8, 0, 7, 6, 4, 8, 9, 6, 9, 1, 4, 7, 5, 9, 5, 3, 3, 7, 2, 4
Offset: 0

Views

Author

Amiram Eldar, May 10 2019

Keywords

Examples

			0.76871836244648519867273433245535052523425574041190...
		

Crossrefs

Cf. A034448, A063974, A308039 (corresponding limit with sigma).

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; m = 1000; f[p_] := 1 - (p - 1)/p*Sum[1/p^k/(p^k + 1), {k, 1, m}]; c = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x]*Range[0, m]];RealDigits[f[2]*Exp[NSum[Indexed[c, k]*(PrimeZetaP[k] - 1/2^k)/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]

Formula

From Amiram Eldar, Dec 23 2024: (Start)
Equals Product_{p prime} ((1-1/p) * (1 + Sum_{k>=1} 1/(p^k+1))).
Equals lim_{m->oo} (1/m) * Sum_{k=1..m} A063974(k). (End)

Extensions

More digits from Vaclav Kotesovec, Jun 13 2021