A308043 Decimal expansion of the asymptotic mean of 2^omega(k)/d(k), where omega(k) is the number of distinct prime divisors of k (A001221) and d(k) is its number of divisors (A000005).
8, 1, 9, 1, 9, 0, 9, 6, 4, 1, 4, 8, 9, 9, 1, 9, 0, 8, 1, 8, 0, 3, 6, 5, 6, 6, 0, 3, 8, 1, 3, 7, 3, 5, 8, 2, 7, 2, 2, 2, 6, 8, 8, 5, 2, 4, 7, 9, 7, 1, 8, 4, 9, 8, 5, 8, 2, 1, 4, 6, 6, 0, 3, 7, 6, 2, 1, 1, 7, 4, 3, 5, 0, 4, 7, 2, 2, 0, 4, 0, 2, 2, 0, 8, 7, 0, 7
Offset: 0
Examples
0.81919096414899190818036566038137358272226885247971...
Programs
-
Mathematica
$MaxExtraPrecision = 1000; m = 1000; f[p_] := (1 - 1/p)*(2*p*Log[p/(p - 1)] - 1); c = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x]]; RealDigits[f[2] * Exp[ NSum[ Indexed[c, n]*(PrimeZetaP[n] - 1/2^n), {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]]
Formula
Equals Product_{p prime} (1-1/p)*(2*p*log(p/(p-1))-1).
Comments