A308056 a(1) = 1, a(n) is the sum of the divisors d of n such that d and n are exponentially coprime.
1, 2, 3, 2, 5, 6, 7, 6, 3, 10, 11, 6, 13, 14, 15, 10, 17, 6, 19, 10, 21, 22, 23, 18, 5, 26, 12, 14, 29, 30, 31, 30, 33, 34, 35, 6, 37, 38, 39, 30, 41, 42, 43, 22, 15, 46, 47, 30, 7, 10, 51, 26, 53, 24, 55, 42, 57, 58, 59, 30, 61, 62, 21, 34, 65, 66, 67, 34, 69
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- László Tóth, On certain arithmetic functions involving exponential divisors, Annales Univ. Sci. Budapest., Sect. Comp., Vol. 24 (2004), pp. 285-294; arXiv preprint, arXiv:math/0610274v2 [math.NT], 2006-2009.
Crossrefs
Cf. A072911.
Programs
-
Mathematica
fun[p_, e_] := Sum[If[GCD[i,e]==1, p^i, 0], {i,1,e}]; a[1] = 1; a[n_] := Times @@ (fun @@@ FactorInteger[n]); Array[a, 100]
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, sum(k = 1, f[i,2], (gcd(k, f[i, 2]) == 1) * f[i,1]^k));} \\ Amiram Eldar, Feb 13 2024
Formula
Multiplicative with a(p^e) = Sum_{i=1..e, gcd(i,e)=1} p^i.
Sum_{k=1..n} a(k) = c * n^2 / 2 + O(x^(3/2) * exp(A * log(n)^(3/5) * log(log(n))^(-1/5))), where A is a constant and c = Product_{p prime} (1 + Sum_{k>=2} (a(p^k) - p*a(p^(k-1)))/p^(2*k)) = 0.77693509739103041486... (Tóth, 2004). - Amiram Eldar, Feb 13 2024
Comments