A308059 Lexicographically earliest sequence of positive terms such that for any distinct m and n, a(m) XOR (2*a(m+1)) <> a(n) XOR (2*a(n+1)) (where XOR denotes the bitwise XOR operator).
1, 1, 2, 1, 3, 1, 4, 1, 5, 4, 3, 6, 1, 8, 1, 9, 8, 2, 5, 8, 3, 10, 8, 8, 10, 10, 12, 12, 13, 8, 12, 16, 16, 17, 5, 13, 16, 18, 18, 20, 20, 21, 16, 20, 24, 24, 25, 16, 24, 27, 16, 25, 18, 26, 32, 32, 33, 1, 16, 32, 34, 34, 36, 36, 37, 1, 18, 32, 36, 40, 40, 41
Offset: 1
Examples
The first terms, alongside a(n) XOR (2*a(n+1)), are: n a(n) a(n) XOR (2*a(n+1)) -- ---- ------------------- 1 1 3 2 1 5 3 2 0 4 1 7 5 3 1 6 1 9 7 4 6 8 1 11 9 5 13 10 4 2
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
Programs
-
PARI
s=0; v=1; for(n=1, 72, print1(v", "); for (w=1, oo, if (!bittest(s,x=bitxor(v,2*w)), s+=2^x; v=w; break)))