A308073 Lexicographically earliest sequence of positive terms such that for any distinct m and n, a(m) + dup(a(m+1)) <> a(n) + dup(a(n+1)) (where dup corresponds to A020330).
1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 2, 2, 3, 2, 4, 2, 5, 2, 6, 3, 4, 3, 5, 3, 6, 4, 4, 5, 4, 6, 5, 5, 6, 6, 7, 3, 7, 4, 7, 5, 7, 6, 8, 3, 8, 4, 8, 5, 8, 6, 9, 3, 9, 4, 9, 5, 9, 6, 10, 3, 10, 7, 7, 8, 7, 9, 7, 10, 8, 8, 9, 8, 10, 9, 9, 10, 10, 11, 3
Offset: 1
Examples
The first terms, alongside a(n) + dup(a(n+1)), are: n a(n) a(n)+dup(a(n+1)) -- ---- ---------------- 1 1 4 2 1 11 3 2 5 4 1 16 5 3 6 6 1 37 7 4 7 8 1 46 9 5 8 10 1 55
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
Programs
-
PARI
s=0; v=1; for(n=1, 84, print1(v", "); for (w=1, oo, if (!bittest(s,x=v+w*(1+2^#binary(w))), s+=2^x; v=w; break)))