cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308083 G.f. A(x) satisfies: A(x) = x + x^2 + x^3 + x^4 + x^5 * (1 + Sum_{i>=1} Sum_{j>=1} A(x^(i*j))).

This page as a plain text file.
%I A308083 #5 May 11 2019 18:32:40
%S A308083 1,1,1,1,1,1,3,3,6,3,9,5,12,11,11,11,22,14,23,19,29,24,41,25,40,41,48,
%T A308083 43,66,45,71,67,86,68,95,73,113,110,118,107,157,115,162,148,182,159,
%U A308083 225,164,235,229,247,227,296,244,328,297,357,298,413,352,452,409,436,415,575
%N A308083 G.f. A(x) satisfies: A(x) = x + x^2 + x^3 + x^4 + x^5 * (1 + Sum_{i>=1} Sum_{j>=1} A(x^(i*j))).
%C A308083 Shifts 5 places left when inverse Moebius transform applied twice.
%F A308083 a(1) = ... = a(5) = 1; a(n+5) = Sum_{d|n} tau(n/d)*a(d), where tau = number of divisors (A000005).
%t A308083 a[n_] := a[n] = Sum[DivisorSigma[0, (n - 5)/d] a[d], {d, Divisors[n - 5]}]; a[1] = a[2] = a[3] = a[4] = a[5] = 1; Table[a[n], {n, 1, 65}]
%Y A308083 Cf. A000005, A007557, A307967, A307982, A307995, A319133.
%K A308083 nonn
%O A308083 1,7
%A A308083 _Ilya Gutkovskiy_, May 11 2019