cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308095 a(n) is the sum of sigma (i.e., A000203) over the totatives of n.

This page as a plain text file.
%I A308095 #18 May 13 2019 10:18:59
%S A308095 1,1,4,5,15,7,33,19,40,26,87,27,127,50,84,82,220,59,277,90,187,140,
%T A308095 407,103,401,193,352,207,660,127,762,309,485,339,646,244,1098,423,677,
%U A308095 390,1342,268,1480,525,758,639,1758,416,1666,581,1191,770,2250,527,1742,821,1527,1016,2786,502,3014
%N A308095 a(n) is the sum of sigma (i.e., A000203) over the totatives of n.
%C A308095 a(n) <= A024916(n-1) for n >= 2, with equality if and only if n is prime.
%H A308095 Robert Israel, <a href="/A308095/b308095.txt">Table of n, a(n) for n = 1..10000</a>
%H A308095 Robert Israel, <a href="/A308095/a308095.png">Plot of a(n)/n^2 for 1 <= n <= 20000</a>
%F A308095 a(n) = Sum_{1<=k<=n; gcd(k,n)=1} A000203(k).
%e A308095 a(3) = sigma(1) + sigma(2) = 4.
%p A308095 f:= proc(n) local k; add(numtheory:-sigma(k), k=select(t -> igcd(t,n)=1, [$1..n])) end proc;
%p A308095 map(f, [$1..100]);
%o A308095 (PARI) a(n) = sum(k=1, n, if (gcd(n,k)==1, sigma(k))); \\ _Michel Marcus_, May 13 2019
%Y A308095 Cf. A000203, A024916, A307997.
%K A308095 nonn,look
%O A308095 1,3
%A A308095 _J. M. Bergot_ and _Robert Israel_, May 12 2019