A308110 Least number k such that the determinant of the symmetric Hankel matrix formed by its decimal digits is equal to n.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 302, 65, 42, 76, 10320, 41, 40, 98, 522, 413, 64, 52, 354, 645, 51, 50, 142, 63, 86, 1534, 13112, 1387, 62, 74, 514, 61, 60, 635, 978, 85, 73, 1431, 502, 2677, 152, 72, 746, 625, 71, 70, 378, 2415, 254, 475, 366, 83, 95, 263, 33442
Offset: 0
Examples
| 3 0 2 | a(10) = 302 because det | 0 2 0 | = 10. | 2 0 3 | . | 1 0 3 2 0 | | 0 3 2 0 2 | a(14)= 10320 because det | 3 2 0 2 3 | = 14. | 2 0 2 3 0 | | 0 2 3 0 1 |
Links
- Robert G. Wilson v, Table of n, a(n) for n = 0..10000
- Wikipedia, Hankel matrix
Programs
-
Maple
with(numtheory): with(linalg): P:=proc(q) local c,d,i,k,n,t: print(0); for i from 1 to q do for n from 1 to q do c:=convert(n, base, 10): t:=[]: for k from 1 to nops(c) do t:=[op(t),0]: od: d:=t: t:=[]: for k from 1 to nops(c) do t:=[op(t),d]: t[k,-k]:=1: od: if det(evalm(toeplitz(c) &* t))=i then print(n); break: fi: od: od: end: P(10^8);
-
Mathematica
f[n_] := Block[{k = 0}, While[id = IntegerDigits@ k; Det[HankelMatrix[id, Reverse@ id]] != n, k++]; k]; Array[f, 60, 0] (* Robert G. Wilson v, May 14 2019 *)
Extensions
Offset corrected by Robert G. Wilson v, May 14 2019
Comments