cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308112 Total number of nodes summed over all lattice paths from (0,0) to (n,n) that consist of steps (h,v) with min(h,v) > 0 and gcd(h,v) = 1.

This page as a plain text file.
%I A308112 #19 Apr 05 2021 09:17:37
%S A308112 1,2,3,10,47,186,703,2640,9979,37980,144713,550666,2093215,7951524,
%T A308112 30186737,114522342,434172249,1644889496,6227677911,23563691408,
%U A308112 89104756279,336752825864,1271998719875,4802187032270,18120902471019,68347041380528,257673014416775
%N A308112 Total number of nodes summed over all lattice paths from (0,0) to (n,n) that consist of steps (h,v) with min(h,v) > 0 and gcd(h,v) = 1.
%H A308112 Alois P. Heinz, <a href="/A308112/b308112.txt">Table of n, a(n) for n = 0..550</a>
%H A308112 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a>
%F A308112 a(n) mod 2 = 1 - (n mod 2) = A059841(n).
%F A308112 a(n) ~ c * d^n * sqrt(n), where d = 3.7137893481485186502229788321701955452444... and c = 0.0685686817861124238901083560487601593693... - _Vaclav Kotesovec_, May 24 2019
%p A308112 b:= proc(x, y) option remember; `if`(y=0, [1$2],
%p A308112       (p-> p +[0, p[1]])(add(add(`if`(igcd(h, v)=1,
%p A308112        b(sort([x-h, y-v])[]), 0), v=1..y), h=1..x)))
%p A308112     end:
%p A308112 a:= n-> b(n$2)[2]:
%p A308112 seq(a(n), n=0..30);
%t A308112 f[p_List] := p + {0, p[[1]]}; f[0] = 0;
%t A308112 b[{x_, y_}] := b[{x, y}] = If[y == 0, {1, 1},
%t A308112      f[Sum[Sum[If[GCD[h, v] == 1,
%t A308112      b[Sort[{x-h, y-v}]], {0, 0}], {v, 1, y}], {h, 1, x}]]];
%t A308112 a[n_] := b[{n, n}][[2]];
%t A308112 a /@ Range[0, 30] (* _Jean-François Alcover_, Apr 05 2021, after _Alois P. Heinz_ *)
%Y A308112 Cf. A059841, A308087, A308114.
%K A308112 nonn
%O A308112 0,2
%A A308112 _Alois P. Heinz_, May 13 2019