This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308112 #19 Apr 05 2021 09:17:37 %S A308112 1,2,3,10,47,186,703,2640,9979,37980,144713,550666,2093215,7951524, %T A308112 30186737,114522342,434172249,1644889496,6227677911,23563691408, %U A308112 89104756279,336752825864,1271998719875,4802187032270,18120902471019,68347041380528,257673014416775 %N A308112 Total number of nodes summed over all lattice paths from (0,0) to (n,n) that consist of steps (h,v) with min(h,v) > 0 and gcd(h,v) = 1. %H A308112 Alois P. Heinz, <a href="/A308112/b308112.txt">Table of n, a(n) for n = 0..550</a> %H A308112 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a> %F A308112 a(n) mod 2 = 1 - (n mod 2) = A059841(n). %F A308112 a(n) ~ c * d^n * sqrt(n), where d = 3.7137893481485186502229788321701955452444... and c = 0.0685686817861124238901083560487601593693... - _Vaclav Kotesovec_, May 24 2019 %p A308112 b:= proc(x, y) option remember; `if`(y=0, [1$2], %p A308112 (p-> p +[0, p[1]])(add(add(`if`(igcd(h, v)=1, %p A308112 b(sort([x-h, y-v])[]), 0), v=1..y), h=1..x))) %p A308112 end: %p A308112 a:= n-> b(n$2)[2]: %p A308112 seq(a(n), n=0..30); %t A308112 f[p_List] := p + {0, p[[1]]}; f[0] = 0; %t A308112 b[{x_, y_}] := b[{x, y}] = If[y == 0, {1, 1}, %t A308112 f[Sum[Sum[If[GCD[h, v] == 1, %t A308112 b[Sort[{x-h, y-v}]], {0, 0}], {v, 1, y}], {h, 1, x}]]]; %t A308112 a[n_] := b[{n, n}][[2]]; %t A308112 a /@ Range[0, 30] (* _Jean-François Alcover_, Apr 05 2021, after _Alois P. Heinz_ *) %Y A308112 Cf. A059841, A308087, A308114. %K A308112 nonn %O A308112 0,2 %A A308112 _Alois P. Heinz_, May 13 2019