cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308114 Total number of nodes summed over all lattice paths from (0,0) to (n,n) that do not go above the diagonal x=y and consist of steps (h,v) with min(h,v) > 0 and gcd(h,v) = 1.

This page as a plain text file.
%I A308114 #17 Apr 05 2021 09:17:43
%S A308114 1,2,3,7,26,92,314,1055,3589,12410,43356,152336,537721,1906063,
%T A308114 6781737,24206994,86644157,310871212,1117741815,4026430097,
%U A308114 14528792287,52504325068,189999731589,688411569408,2497081766875,9067028323162,32953990726244,119875216666167
%N A308114 Total number of nodes summed over all lattice paths from (0,0) to (n,n) that do not go above the diagonal x=y and consist of steps (h,v) with min(h,v) > 0 and gcd(h,v) = 1.
%H A308114 Alois P. Heinz, <a href="/A308114/b308114.txt">Table of n, a(n) for n = 0..550</a>
%H A308114 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a>
%F A308114 a(n) ~ c * d^n / sqrt(n), where d = 3.7137893481485186502229788321701955452444... and c = 0.243302622746026118665161170169985306... - _Vaclav Kotesovec_, May 24 2019
%p A308114 b:= proc(x, y) option remember; `if`(y=0, [1$2], (p-> p+
%p A308114       [0, p[1]])(add(add(`if`(x+v>y+h or igcd(h, v)>1, 0,
%p A308114        b(x-h, y-v)), v=1..y), h=1..x)))
%p A308114     end:
%p A308114 a:= n-> b(n$2)[2]:
%p A308114 seq(a(n), n=0..30);
%t A308114 f[p_List] :=  p + {0, p[[1]]}; f[0] = 0;
%t A308114 b[{x_, y_}] := b[{x, y}] = If[y == 0, {1, 1},
%t A308114      f[Sum[Sum[If[x + v > y + h || GCD[h, v] > 1, {0, 0},
%t A308114      b[{x - h, y - v}]], {v, 1, y}], {h, 1, x}]]];
%t A308114 a[n_] := b[{n, n}][[2]];
%t A308114 a /@ Range[0, 30] (* _Jean-François Alcover_, Apr 05 2021, after _Alois P. Heinz_ *)
%Y A308114 Cf. A308112, A308113.
%K A308114 nonn
%O A308114 0,2
%A A308114 _Alois P. Heinz_, May 13 2019