This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308152 #9 May 14 2019 22:04:27 %S A308152 1,2,8,32,138,612,2864,13712,67416,337482,1716208,8837392,45997032, %T A308152 241571408,1278625480,6813568656,36524390042,196820310100, %U A308152 1065583770168,5793299764208,31615962617272,173131117881312,951040865156928,5239171609158304,28937688613453048 %N A308152 G.f.: x * Product_{j>=1, k>=1} ((1 + x^(j*k))/(1 - x^(j*k)))^a(j). %F A308152 G.f. A(x) satisfies: A(x) = x * exp(2 * Sum_{i>=1} Sum_{j>=1} A(x^(i*(2*j-1)))/(2*j - 1)). %t A308152 a[n_] := a[n] = SeriesCoefficient[x Product[Product[((1 + x^(j k))/(1 - x^(j k)))^a[j], {k, 1, n - 1}], {j, 1, n - 1}], {x, 0, n}]; Table[a[n], {n, 1, 25}] %t A308152 terms = 25; A[_] = 0; Do[A[x_] = x Exp[2 Sum[Sum[A[x^(i (2 j - 1))]/(2 j - 1), {j, 1, terms}], {i, 1,terms}]] + O[x]^(terms + 1) // Normal, terms + 1]; Rest[CoefficientList[A[x], x]] %Y A308152 Cf. A073075, A179467, A308060. %K A308152 nonn %O A308152 1,2 %A A308152 _Ilya Gutkovskiy_, May 14 2019