This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308163 #46 Sep 08 2022 08:46:21 %S A308163 1,2,4,8,11,13,17,22,26,31,44,53,62,71,79,88,97,101,103,107,121,143, %T A308163 169,187,202,206,211,233,242,251,277,286,341,349,367,404,422,431,439, %U A308163 457,466,484,503,521,547,583,619,673,682,691,701,709,727,781,808,844 %N A308163 Numbers for which the sum of the digits of any divisor is a power of 2. %C A308163 The prime numbers in A068807 belong to the sequence. %e A308163 Divisors(8) = {1, 2, 4, 8} with sums of digits respectively 1, 2, 4, 8, powers of 2. %e A308163 Divisors(13) = {1, 13} with sums of digits 1 and 4, powers of 2 . %e A308163 Divisors(286) = {1, 2, 11, 13, 22, 26, 143, 286} with sums of digits respectively 1, 2, 2, 4, 4, 8, 16, powers of 2. %o A308163 (Magma) sol:=[]; m:=1;for n in [1..850] do nr:=#[d: d in Divisors(n) | PrimeDivisors(&+Intseq(d)) eq [2]]; if nr eq #Divisors(n)-1 then sol[m]:=n; m:=m+1; end if; end for; sol; %o A308163 (PARI) ispp(n) = (n==1) || (isprimepower(n, &p) && (p==2)); %o A308163 isok(n) = fordiv(n, d, if (!ispp(sumdigits(d)), return (0))); return (1); \\ _Michel Marcus_, Jun 12 2019 %Y A308163 Cf. A000005, A000079, A007953, A068807, A028838. %K A308163 nonn,base %O A308163 1,2 %A A308163 _Marius A. Burtea_, Jun 11 2019