cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308168 Numbers m that cannot be represented as a k-tuple factorial b!k for any b and k < m-1.

Original entry on oeis.org

3, 4, 5, 7, 9, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 77, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 211, 221, 223, 227, 229, 233, 239, 241, 247, 251, 257, 263
Offset: 1

Views

Author

Elijah Beregovsky, May 15 2019

Keywords

Comments

If k >= m-1, then every number can be represented as a multifactorial: m = m!k.
The sequence contains only primes and numbers of the form p*q, where p and q are both prime and satisfy the inequalities p >= q and p-q < q-1.
Proof: If m has exactly two prime factors p and q (p > q), but p and q do not satisfy the second inequality, then m = p!(p-q). If, on the other hand, m has at least three factors a, b and c, (a >= b >= c > 1, m = a*b*c), then a*b-c > c-1, so m = (a*b)!(a*b-c).
Moreover, the sequence contains all numbers of that form. Proof: If they could be represented as a multifactorial, then it would be a (p-q)-tuple factorial. But as the second inequality is true, q-(p-q) is positive, therefore q-(p-q) should also divide m. But m has only two prime factors p and q, so the assumption is wrong and sequence indeed contains all numbers of that form.
1 and 2 are not in the sequence, because (-1)- and 0-tuple factorials are not defined.
Squarefree semiprimes that are in this sequence (35, 77, 143, 187, 209, 221, ...) are all in A259282 and they are the only semiprimes there. (See the Echi and Ghanmi reference for a proof.) - Elijah Beregovsky, Feb 05 2020

Examples

			15 is not in the sequence because 15 = 1*3*5 = 5!!.
35 is in the sequence because 35 = 7*5 and 7-5 < 5-1.
		

Crossrefs