cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308174 Let EM denote the Ehrenfeucht-Mycielski sequence A038219, and let P(n) = [EM(1),...,EM(n)]. To compute EM(n+1) for n>=3, we find the longest suffix S (say) of P(n) which has previously appeared in P(n). Suppose the most recent appearance of S began at index n-t(n). Then a(n) = length of S, while t(n) is given in A308175.

Table of values

n a(n)
3 1
4 1
5 2
6 1
7 2
8 2
9 3
10 3
11 3
12 2
13 3
14 3
15 2
16 3
17 3
18 4
19 4
20 3
21 4
22 4
23 4
24 3
25 4
26 4
27 4
28 4
29 4
30 4
31 4
32 4
33 4
34 4
35 5
36 5
37 5
38 5
39 6
40 5
41 5
42 5
43 5
44 5
45 5
46 5
47 5
48 5
49 5
50 5
51 5
52 4
53 5
54 5
55 5
56 5
57 5
58 5
59 5
60 5
61 5
62 4
63 5
64 5
65 5
66 5
67 6
68 6
69 6
70 6
71 6
72 6
73 6
74 5
75 6
76 6
77 6
78 6
79 5
80 5
81 6
82 6
83 6
84 6
85 6
86 6
87 6
88 6
89 6

List of values

[1, 1, 2, 1, 2, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 6, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6]