A308189 Numbers of the form t_n or t_n + t_{n+1} where {t_n} are the tribonacci numbers A000073.
0, 1, 2, 3, 4, 6, 7, 11, 13, 20, 24, 37, 44, 68, 81, 125, 149, 230, 274, 423, 504, 778, 927, 1431, 1705, 2632, 3136, 4841, 5768, 8904, 10609, 16377, 19513, 30122, 35890, 55403, 66012, 101902, 121415, 187427, 223317, 344732, 410744, 634061, 755476, 1166220, 1389537, 2145013, 2555757, 3945294, 4700770, 7256527
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Hamoon Mousavi and Jeffrey Shallit, Mechanical Proofs of Properties of the Tribonacci Word, arXiv:1407.5841 [cs.FL], 2014.
- H. Mousavi and J. Shallit, Mechanical Proofs of Properties of the Tribonacci Word, In: Manea F., Nowotka D. (eds) Combinatorics on Words. WORDS 2015. Lecture Notes in Computer Science, vol 9304. Springer, 2015, pp. 170-190.
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,1,0,1).
Programs
-
Mathematica
LinearRecurrence[{0,1,0,1,0,1},{0,1,2,3,4,6,7,11},100] (* Paolo Xausa, Nov 14 2023 *)
-
PARI
concat(0, Vec(x^2*(1 + 2*x + 2*x^2 + 2*x^3 + 2*x^4 + x^5 + x^6) / (1 - x^2 - x^4 - x^6) + O(x^50))) \\ Colin Barker, Jun 11 2019
Formula
From Colin Barker, Jun 11 2019: (Start)
G.f.: x^2*(1 + 2*x + 2*x^2 + 2*x^3 + 2*x^4 + x^5 + x^6) / (1 - x^2 - x^4 - x^6).
a(n) = a(n-2) + a(n-4) + a(n-6) for n>8.
(End)
Comments