cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308189 Numbers of the form t_n or t_n + t_{n+1} where {t_n} are the tribonacci numbers A000073.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 11, 13, 20, 24, 37, 44, 68, 81, 125, 149, 230, 274, 423, 504, 778, 927, 1431, 1705, 2632, 3136, 4841, 5768, 8904, 10609, 16377, 19513, 30122, 35890, 55403, 66012, 101902, 121415, 187427, 223317, 344732, 410744, 634061, 755476, 1166220, 1389537, 2145013, 2555757, 3945294, 4700770, 7256527
Offset: 1

Views

Author

N. J. A. Sloane, Jun 09 2019

Keywords

Comments

Orders of squares in the ternary tribonacci word A080843.
This is A213816 with duplicates removed.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,1,0,1,0,1},{0,1,2,3,4,6,7,11},100] (* Paolo Xausa, Nov 14 2023 *)
  • PARI
    concat(0, Vec(x^2*(1 + 2*x + 2*x^2 + 2*x^3 + 2*x^4 + x^5 + x^6) / (1 - x^2 - x^4 - x^6) + O(x^50))) \\ Colin Barker, Jun 11 2019

Formula

From Colin Barker, Jun 11 2019: (Start)
G.f.: x^2*(1 + 2*x + 2*x^2 + 2*x^3 + 2*x^4 + x^5 + x^6) / (1 - x^2 - x^4 - x^6).
a(n) = a(n-2) + a(n-4) + a(n-6) for n>8.
(End)