cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308203 Array read by ascending antidiagonals: T(n,k) = number of non-isomorphic kC_n-snakes for n >= 3 and k >= 2.

This page as a plain text file.
%I A308203 #27 Sep 28 2019 21:58:06
%S A308203 1,1,1,1,2,1,1,2,3,1,1,3,3,6,1,1,3,6,6,10,1,1,4,6,18,10,20,1,1,4,10,
%T A308203 18,45,20,36,1,1,5,10,40,45,135,36,72,1,1,5,15,40,136,135,378,72,136,
%U A308203 1,1,6,15,75,136,544,378,1134,136,272,1
%N A308203 Array read by ascending antidiagonals: T(n,k) = number of non-isomorphic kC_n-snakes for n >= 3 and k >= 2.
%C A308203 A kC_n-snake is a connected graph in which the k >= 2 blocks are isomorphic to the cycle C_n and the block-cutpoint graph is a path.
%F A308203 For n >= 3 and k >= 2, T(n,k) = (floor(n/2)^(k-2) + floor(n/2)^(floor(k-1)/2))/2.
%F A308203 For n even, T(n, 2)=1, if k is odd T(n,k)=(n/2)*T(n,k-1), if k is even T(n,k)=(n/2)*T(n,k-1)-((n-2)/4)*(n/2)^((k-2)/2).
%e A308203 T(n,2)=1 because there is only one way to connect two copies of C_n.
%e A308203 T(3,k)=1 because C_3 is isomorphic to K_3 and all the selections of 2 cutpoints, in each interior copy of C_3, are equivalent.
%e A308203 T(5,4)=3 there are only 3 non-equivalent strings of length 2 corresponding to the distances between consecutive cutpoints: 11, 12, and 2,2.
%e A308203 Table begins:
%e A308203 1    1    1     1      1       1        1         1          1           1            1
%e A308203 1    2    3     6     10      20       36        72        136         272          528
%e A308203 1    2    3     6     10      20       36        72        136         272          528
%e A308203 1    3    6    18     45     135      378      1134       3321        9963        29646
%e A308203 1    3    6    18     45     135      378      1134       3321        9963        29646
%e A308203 1    4   10    40    136     544     2080      8320      32896      131584       524800
%e A308203 1    4   10    40    136     544     2080      8320      32896      131584       524800
%e A308203 1    5   15    75    325    1625     7875     39375     195625      978125      4884375
%e A308203 1    5   15    75    325    1625     7875     39375     195625      978125      4884375
%e A308203 1    6   21   126    666    3996    23436    140616     840456     5042736     30236976
%e A308203 1    6   21   126    666    3996    23436    140616     840456     5042736     30236976
%e A308203 1    7   28   196   1225    8575    58996    412972    2883601    20185207    141246028
%e A308203 1    7   28   196   1225    8575    58996    412972    2883601    20185207    141246028
%e A308203 1    8   36   288   2080   16640   131328   1050624    8390656    67125248    536887296
%e A308203 1    8   36   288   2080   16640   131328   1050624    8390656    67125248    536887296
%e A308203 1    9   45   405   3321   29889   266085   2394765   21526641   193739769   1743421725
%e A308203 1    9   45   405   3321   29889   266085   2394765   21526641   193739769   1743421725
%e A308203 1   10   55   550   5050   50500   500500   5005000   50005000   500050000   5000050000
%K A308203 easy,nonn,tabl
%O A308203 3,5
%A A308203 _Christian Barrientos_, May 15 2019