cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308205 G.f.: x * Product_{k>=1} (1 + k*x^k)^a(k).

This page as a plain text file.
%I A308205 #6 May 15 2019 20:30:03
%S A308205 1,1,2,8,38,234,1679,13802,127155,1297619,14516296,176640311,
%T A308205 2322876382,32831464503,496399943530,7995690518504,136701790293581,
%U A308205 2472679442088700,47180405307783443,947116124382018095,19954735355719570880,440286840550877179031
%N A308205 G.f.: x * Product_{k>=1} (1 + k*x^k)^a(k).
%F A308205 Recurrence: a(n+1) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} (-d)^(k/d+1)*a(d) ) * a(n-k+1).
%t A308205 a[n_] := a[n] = SeriesCoefficient[x Product[(1 + k x^k)^a[k], {k, 1, n - 1}], {x, 0, n}]; Table[a[n], {n, 1, 22}]
%t A308205 a[n_] := a[n] = Sum[Sum[(-d)^(k/d + 1) a[d], {d, Divisors[k]}] a[n - k], {k, 1, n - 1}]/(n - 1); a[1] = 1; Table[a[n], {n, 1, 22}]
%Y A308205 Cf. A004111, A308204, A308206, A308207.
%K A308205 nonn
%O A308205 1,3
%A A308205 _Ilya Gutkovskiy_, May 15 2019