This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308207 #5 May 15 2019 20:30:14 %S A308207 1,1,2,8,39,240,1723,14165,130459,1331530,14894260,181259007, %T A308207 2383643794,33692516860,509433237073,8205927166103,140299345385359, %U A308207 2537807239717465,48423816128109123,972089365983087479,20481094574718083726,451904232651000126082 %N A308207 G.f.: x * Product_{k>=1} (1 + a(k)*x^k)^k. %F A308207 Recurrence: a(n+1) = -(1/n) * Sum_{k=1..n} ( Sum_{d|k} d^2*(-a(d))^(k/d) ) * a(n-k+1). %t A308207 a[n_] := a[n] = SeriesCoefficient[x Product[(1 + a[k] x^k)^k, {k, 1, n - 1}], {x, 0, n}]; Table[a[n], {n, 1, 22}] %t A308207 a[n_] := a[n] = -Sum[Sum[d^2 (-a[d])^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n - 1}]/(n - 1); a[1] = 1; Table[a[n], {n, 1, 22}] %Y A308207 Cf. A032305, A308204, A308205, A308206. %K A308207 nonn %O A308207 1,3 %A A308207 _Ilya Gutkovskiy_, May 15 2019