This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308215 #54 Nov 10 2024 13:18:57 %S A308215 0,2,12,11,39,28,82,53,141,86,216,127,307,176,414,233,537,298,676,371, %T A308215 831,452,1002,541,1189,638,1392,743,1611,856,1846,977,2097,1106,2364, %U A308215 1243,2647,1388,2946,1541,3261,1702,3592,1871,3939,2048 %N A308215 a(n) is the multiplicative inverse of A001844(n+1) modulo A001844(n); where A001844 is the sequence of centered square numbers. %C A308215 The sequence explores the relationship between the terms of A001844, the sums of consecutive squares. The sequence is an interleaving of A054552 (a number spiral arm) and (A001844-n). The gap between the lower values of A308215 and the upper values of A308217 increase by 3n; each successive gap increasing by 6. %H A308215 Daniel Hoyt, <a href="/A308215/a308215_2.png">Graph of A308215 and A308217 in relation to A001844</a> %F A308215 a(n) satisfies a(n)*(2*n*(n+1)+1) == 1 (mod 2*n*(n-1)+1). %F A308215 Conjectures from _Colin Barker_, May 16 2019: (Start) %F A308215 G.f.: x*(2 + 12*x + 5*x^2 + 3*x^3 + x^4 + x^5) / ((1 - x)^3*(1 + x)^3). %F A308215 a(n) = (3 + (-1)^n + 2*(2+(-1)^n)*n + 2*(3+(-1)^n)*n^2) / 4 for n>0. %F A308215 a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>6. %F A308215 (End) %o A308215 (Python) %o A308215 import gmpy2 %o A308215 sos = [] # sum of squares %o A308215 a=0 %o A308215 b=1 %o A308215 for i in range(50): %o A308215 c = a**2 + b**2 %o A308215 sos.append(c) %o A308215 a +=1 %o A308215 b +=1 %o A308215 ls = [] %o A308215 for i in range(len(sos)-1): %o A308215 c = gmpy2.invert(sos[i+1],sos[i]) %o A308215 ls.append(int(c)) %o A308215 print(ls) %o A308215 (PARI) f(n) = 2*n*(n+1)+1; \\ A001844 %o A308215 a(n) = lift(1/Mod(f(n+1), f(n))); \\ _Michel Marcus_, May 16 2019 %Y A308215 Cf. A001844, A033951, A054552, A308217. %K A308215 nonn %O A308215 0,2 %A A308215 _Daniel Hoyt_, May 15 2019