A308244 Triangle T(n,k) read by rows, giving even-numbered coefficients of the matching polynomial of the n-ladder graph.
1, -1, 1, 2, -4, 1, -3, 11, -7, 1, 5, -26, 29, -10, 1, -8, 56, -94, 56, -13, 1, 13, -114, 263, -234, 92, -16, 1, -21, 223, -667, 815, -473, 137, -19, 1, 34, -424, 1577, -2504, 1982, -838, 191, -22, 1, -55, 789, -3538, 7018, -7191, 4115, -1356, 254, -25, 1, 89, -1444, 7622, -18336, 23431, -17266
Offset: 0
Examples
Triangle begins 1 -1 1 2 -4 1 -3 11 -7 1 5 -26 29 -10 1 -8 56 -94 56 -13 1 13 -114 263 -234 92 -16 1 -21 223 -667 815 -473 137 -19 1 34 -424 1577 -2504 1982 -838 191 -22 1
Links
- Robert Israel, Table of n, a(n) for n = 0..10010 (rows 0 to 140, flattened)
- Eric Weisstein's World of Mathematics, Ladder Graph.
- Eric Weisstein's World of Mathematics, Matching Polynomial.
Programs
-
Maple
g:= gfun:-rectoproc({a(n+3)+(-x^2+2)*a(n+2)+x^2*a(n+1)-a(n),a(0)=1,a(1)=x^2-1,a(2)=x^4-4*x^2+2}, a(n), remember): for nn from 0 to 10 do seq(coeff(g(nn),x,k),k=0..2*nn,2) od;
Comments