This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308249 #22 Mar 14 2020 15:52:32 %S A308249 0,1,16,81,4096,6561,263169,1478656,40960000,205549569,54988374016, %T A308249 233605955584,6263292059649,303894740860929,338531738189824, %U A308249 170196776412774400,709858175909625856,18638643564726714369,124592287100855910400,2576097707358918017025,479214351668445504864256 %N A308249 Squares of automorphic numbers in base 12 (cf. A201918). %C A308249 (sqrt(m))_12 is a suffix of m_12. - _A.H.M. Smeets_, Aug 09 2019 %C A308249 All terms k^2 in this sequence (except the trivials 0 and 1) have a square root k that is the suffix of one of the 12-adic numbers given by A259468 or A259469. From this, the sequence has an infinite number of terms. - _A.H.M. Smeets_, Aug 09 2019 %H A308249 V. deGuerre and R. A. Fairbairn, <a href="https://oeis.org/A003226/a003226.pdf">Automorphic numbers</a>, J. Rec. Math., 1 (No. 3, 1968), 173-179. %F A308249 Equals A201918(n)^2. %e A308249 4096 = 2454_12 and sqrt(2454_12) = 54_12. Hence 4096 is in the sequence. %o A308249 (Sage) [(n * n) for n in (0..1000000) if (n * n).str(base = 12).endswith(n.str(base = 12))] %o A308249 (Python) %o A308249 dig = "0123456789AB" %o A308249 def To12(n): %o A308249 s = "" %o A308249 while n > 0: %o A308249 s, n = dig[n%12]+s, n//12 %o A308249 return s %o A308249 n, m = 1, 0 %o A308249 print(n,m*m) %o A308249 while n < 100: %o A308249 m = m+1 %o A308249 m2, m1 = To12(m*m), To12(m) %o A308249 i, i2, i1 = 0, len(m2), len(m1) %o A308249 while i < i1 and (m2[i2-i-1] == m1[i1-i-1]): %o A308249 i = i+1 %o A308249 if i == i1: %o A308249 print(n,m*m) %o A308249 n = n+1 # _A.H.M. Smeets_, Aug 09 2019 %Y A308249 Cf. A201918, A259468, A259469. %K A308249 nonn,base %O A308249 1,3 %A A308249 _Jeremias M. Gomes_, May 17 2019 %E A308249 Terms a(16)..a(21) from _A.H.M. Smeets_, Aug 09 2019