This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A308262 #12 May 17 2019 22:07:06 %S A308262 0,1,5,6,10,11,25,36,50,51,60,61,100,101,110,111,250,251,360,361,425, %T A308262 500,501,510,511,600,601,610,611,936,1000,1001,1010,1011,1100,1101, %U A308262 1110,1111,1936,2500,2501,2510,2511,3600,3601,3610,3611,4250,4251,5000,5001 %N A308262 Numbers m such that A048385(m) ends with m. %C A308262 If m belongs to this sequence, then A048385(m) belongs to this sequence. %C A308262 If m belongs to this sequence, then 10*m and 10*m + 1 belong to this sequence. %C A308262 This sequence contains A007088. %C A308262 All terms belong to A052419. %C A308262 Let U be the infinite word ...|A048385^2(16)|A048385(16)|16425 and V be the infinite word ...|A048385^2(81)|A048385(81)|81936. The terms of this sequence consist of the last x digits of either U or V followed by y digits in {0,1}, where x and y are nonnegative integers. - _Charlie Neder_, May 17 2019 %H A308262 Rémy Sigrist, <a href="/A308262/a308262.gp.txt">PARI program for A308262</a> %e A308262 The first terms, alongside A048385(a(n)), are: %e A308262 n a(n) A048385(a(n)) %e A308262 -- ---- ------------- %e A308262 1 0 0 %e A308262 2 1 1 %e A308262 3 5 25 %e A308262 4 6 36 %e A308262 5 10 10 %e A308262 6 11 11 %e A308262 7 25 425 %e A308262 8 36 936 %e A308262 9 50 250 %e A308262 10 51 251 %e A308262 11 60 360 %e A308262 12 61 361 %o A308262 (PARI) See Links section. %o A308262 (MATLAB) m=1; %o A308262 for u=0:5001 %o A308262 digit=dec2base(u,10)-'0';digitp=digit.^2; %o A308262 aa=str2num(strrep(num2str(digitp), ' ', '')); %o A308262 digitaa=dec2base(aa,10)-'0'; %o A308262 if mod(aa,10^length(digit))==u %o A308262 sol(m)=u; m=m+1; %o A308262 end %o A308262 end %o A308262 sol % _Marius A. Burtea_, May 17 2019 %Y A308262 Cf. A003226, A007088, A048385, A052419. %K A308262 nonn,base %O A308262 1,3 %A A308262 _Rémy Sigrist_, May 17 2019