cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308264 Number of ordered factorizations of n into triangular numbers > 1.

This page as a plain text file.
%I A308264 #12 Oct 05 2023 16:25:25
%S A308264 1,0,1,0,0,1,0,0,1,1,0,0,0,0,1,0,0,2,0,0,1,0,0,0,0,0,1,1,0,2,0,0,0,0,
%T A308264 0,2,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,1,0,0,0,0,2,0,0,2,0,0,1,0,0,
%U A308264 0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,2,0,0,0,0,0,5,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1
%N A308264 Number of ordered factorizations of n into triangular numbers > 1.
%H A308264 Antti Karttunen, <a href="/A308264/b308264.txt">Table of n, a(n) for n = 1..101025</a>
%F A308264 G.f. A(x) satisfies: A(x) = x + Sum_{k>=2} A(x^(k*(k+1)/2)).
%F A308264 a(1) = 1; a(n) = Sum_{d|n, d<n} A010054(n/d)*a(d).
%t A308264 terms = 100; A[_] = 0; Do[A[x_] = x + Sum[A[x^(k (k + 1)/2)], {k, 2, terms}] + O[x]^(terms + 1) // Normal, terms + 1]; Rest[CoefficientList[A[x], x]]
%t A308264 a[n_] := If[n == 1, n, Sum[If[(d < n && IntegerQ[Sqrt[8 n/d + 1]]), a[d], 0], {d, Divisors[n]}]]; Table[a[n], {n, 1, 100}]
%o A308264 (PARI)
%o A308264 A010054(n) = issquare(1 + 8*n);
%o A308264 A308264(n) = if(1==n,n,sumdiv(n,d,if(d<n,A010054(n/d)*A308264(d),0))); \\ _Antti Karttunen_, Oct 05 2023
%Y A308264 Cf. A000217, A010054, A085782 (for n > 1, positions of nonzero terms).
%Y A308264 Not the absolute values of A365800.
%K A308264 nonn
%O A308264 1,18
%A A308264 _Ilya Gutkovskiy_, May 17 2019
%E A308264 Data section extended to 105 terms by _Antti Karttunen_, Oct 05 2023