cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A308266 Sum of the middle parts in the partitions of n into 3 parts.

This page as a plain text file.
%I A308266 #11 Jul 09 2020 19:38:43
%S A308266 0,0,1,1,3,5,8,11,18,22,31,40,51,62,80,93,114,135,159,183,217,244,282,
%T A308266 320,362,404,459,505,565,625,690,755,836,906,993,1080,1173,1266,1378,
%U A308266 1477,1596,1715,1841,1967,2115,2248,2404,2560,2724,2888,3077,3249,3447
%N A308266 Sum of the middle parts in the partitions of n into 3 parts.
%H A308266 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F A308266 a(n) = Sum_{k=1..floor(n/3)} Sum_{i=k..floor((n-k)/2)} i.
%F A308266 Conjectures from _Colin Barker_, Jul 16 2019: (Start)
%F A308266 G.f.: x^3*(1 + x + x^2 + x^3 + x^4) / ((1 - x)^4*(1 + x)^2*(1 + x + x^2)^2).
%F A308266 a(n) = 2*a(n-2) + 2*a(n-3) - a(n-4) - 4*a(n-5) - a(n-6) + 2*a(n-7) + 2*a(n-8) - a(n-10) for n>10.
%F A308266 (End)
%e A308266 Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
%e A308266                                                           1+1+8
%e A308266                                                    1+1+7  1+2+7
%e A308266                                                    1+2+6  1+3+6
%e A308266                                             1+1+6  1+3+5  1+4+5
%e A308266                                      1+1+5  1+2+5  1+4+4  2+2+6
%e A308266                               1+1+4  1+2+4  1+3+4  2+2+5  2+3+5
%e A308266                        1+1+3  1+2+3  1+3+3  2+2+4  2+3+4  2+4+4
%e A308266          1+1+1  1+1+2  1+2+2  2+2+2  2+2+3  2+3+3  3+3+3  3+3+4    ...
%e A308266 -----------------------------------------------------------------------
%e A308266   n  |     3      4      5      6      7      8      9     10      ...
%e A308266 -----------------------------------------------------------------------
%e A308266 a(n) |     1      1      3      5      8     11     18     22      ...
%e A308266 -----------------------------------------------------------------------
%t A308266 Table[Sum[Sum[i, {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]
%t A308266 Table[Total[IntegerPartitions[n,{3}][[All,2]]],{n,60}] (* _Harvey P. Dale_, Jul 09 2020 *)
%Y A308266 Cf. A308265.
%K A308266 nonn
%O A308266 1,5
%A A308266 _Wesley Ivan Hurt_, May 17 2019